Suppr超能文献

长效、防紫外线、基于纤维素的阿维菌素纳米/微米球,具有双重智能刺激-微环境响应性,用于小菜蛾防治。

Long-lasting, UV shielding, and cellulose-based avermectin nano/micro spheres with dual smart stimuli-microenvironment responsiveness for Plutella xylostella control.

机构信息

Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.

Zhejiang Zhuji United Chemicals Co., Ltd., Hangzhou 321042, PR China.

出版信息

Carbohydr Polym. 2024 Dec 1;345:122553. doi: 10.1016/j.carbpol.2024.122553. Epub 2024 Aug 2.

Abstract

The requirement to improve the efficiency of pesticide utilization has led to the development of sustainable and smart stimuli-responsive pesticide delivery systems. Herein, a novel avermectin nano/micro spheres (AVM@HPMC-Oxalate) with sensitive stimuli-response function target to the Lepidoptera pests midgut microenvironment (pH 8.0-9.5) was constructed using hydroxypropyl methylcellulose (HPMC) as the cost-effective and biodegradable material. The avermectin (AVM) loaded nano/micro sphere was achieved with high AVM loading capacity (up to 66.8 %). The simulated release experiment proved the rapid stimuli-responsive and pesticides release function in weak alkaline (pH 9) or cellulase environment, and the release kinetics were explained through release models and SEM characterization. Besides, the nano/micro sphere size made AVM@HPMC-Oxalate has higher foliar retention rate (1.6-2.1-fold higher than commercial formulation) which is beneficial for improving the utilization of pesticides. The in vivo bioassay proved that AVM@HPMC-Oxalate could achieve the long-term control of Plutella xylostella by extending UV shielding performance (9 fold higher than commercial formulation). After 3 h of irradiation, the mortality rate of P. xylostella treated by AVM@HPMC-Oxalate still up to 56.7 % ± 5.8 %. Moreover, AVM@HPMC-Oxalate was less toxic to non-target organisms, and the acute toxicity to zebrafish was reduced by 2-fold compared with AVM technical.

摘要

提高农药利用效率的要求促使可持续和智能刺激响应型农药输送系统得到发展。本文采用羟丙基甲基纤维素(HPMC)作为具有成本效益和可生物降解的材料,构建了一种具有敏感刺激响应功能的新型阿维菌素纳米/微球(AVM@HPMC-Oxalate),靶向鳞翅目害虫中肠微环境(pH 8.0-9.5)。载有阿维菌素(AVM)的纳米/微球具有较高的 AVM 载药能力(高达 66.8%)。模拟释放实验证明了在弱碱性(pH 9)或纤维素酶环境中的快速刺激响应和农药释放功能,通过释放模型和 SEM 表征解释了释放动力学。此外,纳米/微球的尺寸使 AVM@HPMC-Oxalate 具有更高的叶面保留率(比商业制剂高 1.6-2.1 倍),有利于提高农药的利用率。体内生物测定证明,AVM@HPMC-Oxalate 通过延长紫外线屏蔽性能(比商业制剂高 9 倍),可以实现小菜蛾的长期控制。经 3 h 照射后,AVM@HPMC-Oxalate 处理的小菜蛾死亡率仍高达 56.7%±5.8%。此外,AVM@HPMC-Oxalate 对非靶标生物的毒性较低,与 AVM 技术相比,对斑马鱼的急性毒性降低了 2 倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验