Suppr超能文献

基于藻酸盐的原纤维蛋白微胶囊的全水相合成及其在肿瘤球体膜限培养中的应用。

All-aqueous synthesis of alginate complexed with fibrillated protein microcapsules for membrane-bounded culture of tumor spheroids.

机构信息

State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China.

Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang 314100, China.

出版信息

Carbohydr Polym. 2024 Dec 1;345:122580. doi: 10.1016/j.carbpol.2024.122580. Epub 2024 Aug 3.

Abstract

Water-in-water (W/W) emulsions provide bio-compatible all-aqueous compartments for artificial patterning and assembly of living cells. Successful entrapment of cells within a W/W emulsion via the formation of semipermeable capsules is a prerequisite for regulating on the size, shape, and architecture of cell aggregates. However, the high permeability and instability of the W/W interface, restricting the assembly of stable capsules, pose a fundamental challenge for cell entrapment. The current study addresses this problem by synthesizing multi-armed protein fibrils and controlling their assembly at the W/W interface. The multi-armed protein fibrils, also known as 'fibril clusters', were prepared by cross-linking lysozyme fibrils with multi-arm polyethylene glycol (PEG) via click chemistry. Compared to linear-structured fibrils, fibril clusters are strongly adsorbed at the W/W interface, forming an interconnected meshwork that better stabilizes the W/W emulsion. Moreover, when fibril clusters are complexed with alginate, the hybrid microcapsules demonstrate excellent mechanical robustness, semi-permeability, cytocompatibility and biodegradability. These advantages enable the encapsulation, entrapment and long-term culture of tumor spheroids, with great promise for applications for anti-cancer drug screening, tumor disease modeling, and tissue repair engineering.

摘要

水包水 (W/W) 乳液为人工图案设计和活细胞组装提供了生物相容的全水相隔室。通过形成半透性胶囊成功地将细胞困在 W/W 乳液中是调节细胞聚集体的大小、形状和结构的前提条件。然而,W/W 界面的高渗透性和不稳定性限制了稳定胶囊的组装,这对细胞捕获构成了根本性的挑战。本研究通过合成多臂蛋白原纤维并控制其在 W/W 界面的组装来解决这个问题。多臂蛋白原纤维也称为“原纤维簇”,是通过点击化学将溶菌酶原纤维与多臂聚乙二醇 (PEG) 交联制备的。与线性结构的原纤维相比,原纤维簇强烈吸附在 W/W 界面上,形成相互连接的网状结构,更好地稳定了 W/W 乳液。此外,当原纤维簇与藻酸盐复合时,混合微胶囊表现出优异的机械强度、半透性、细胞相容性和生物降解性。这些优点使得能够对肿瘤球体进行封装、捕获和长期培养,为抗癌药物筛选、肿瘤疾病建模和组织修复工程的应用提供了广阔的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验