Department of Biology, Boston University, Boston, Massachusetts 02215.
Center for Network Systems Biology, Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118.
J Neurosci. 2024 Oct 16;44(42):e0072242024. doi: 10.1523/JNEUROSCI.0072-24.2024.
Reelin, a secreted glycoprotein, plays a crucial role in guiding neocortical neuronal migration, dendritic outgrowth and arborization, and synaptic plasticity in the adult brain. Reelin primarily operates through the canonical lipoprotein receptors apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr). Reelin also engages with noncanonical receptors and unidentified coreceptors; however, the effects of which are less understood. Using high-throughput tandem mass tag (TMT) liquid chromatography tandem mass spectrometry (LC-MS/MS)-based proteomics and gene set enrichment analysis (GSEA), we identified both shared and unique intracellular pathways activated by Reelin through its canonical and noncanonical signaling in primary murine neurons of either sex during dendritic growth and arborization. We observed pathway cross talk related to regulation of cytoskeleton, neuron projection development, protein transport, and actin filament-based process. We also found enriched gene sets exclusively by the noncanonical Reelin pathway including protein translation, mRNA metabolic process, and ribonucleoprotein complex biogenesis suggesting Reelin fine-tunes neuronal structure through distinct signaling pathways. A key discovery is the identification of aldolase A, a glycolytic enzyme and actin-binding protein, as a novel effector of Reelin signaling. Reelin induced de novo translation and mobilization of aldolase A from the actin cytoskeleton. We demonstrated that aldolase A is necessary for Reelin-mediated dendrite growth and arborization in primary murine neurons and mouse brain cortical neurons. Interestingly, the function of aldolase A in dendrite development is independent of its known role in glycolysis. Altogether, our findings provide new insights into the Reelin-dependent signaling pathways and effector proteins that are crucial for dendritic development.
Reelin 是一种分泌型糖蛋白,在指导新皮层神经元迁移、树突生长和分支以及成年大脑中的突触可塑性方面发挥着关键作用。 Reelin 主要通过经典的脂蛋白受体载脂蛋白 E 受体 2(Apoer2)和极低密度脂蛋白受体(Vldlr)发挥作用。 Reelin 还与非经典受体和未识别的核心受体结合,但这些受体的作用了解较少。我们使用高通量串联质量标签(TMT)液相色谱串联质谱(LC-MS/MS)基于蛋白质组学和基因集富集分析(GSEA),鉴定了 Reelin 通过其在雄性和雌性原代小鼠神经元中的经典和非经典信号在树突生长和分支过程中激活的共享和独特的细胞内途径。我们观察到与细胞骨架调节、神经元突起发育、蛋白质运输和基于肌动蛋白丝的过程相关的途径交叉对话。我们还发现了仅由非经典 Reelin 途径富集的基因集,包括蛋白质翻译、mRNA 代谢过程和核糖核蛋白复合物生物发生,这表明 Reelin 通过不同的信号通路精细调节神经元结构。一个关键的发现是鉴定出醛缩酶 A,一种糖酵解酶和肌动蛋白结合蛋白,作为 Reelin 信号的新效应物。 Reelin 诱导醛缩酶 A 的从头翻译和从肌动蛋白细胞骨架中的动员。我们证明,醛缩酶 A 是 Reelin 介导的原代小鼠神经元和小鼠大脑皮质神经元中树突生长和分支所必需的。有趣的是,醛缩酶 A 在树突发育中的功能与其在糖酵解中的已知作用无关。总之,我们的发现为 Reelin 依赖性信号通路和对树突发育至关重要的效应蛋白提供了新的见解。