Suppr超能文献

循环肿瘤细胞的低通全基因组测序评估三阴性乳腺癌的染色体不稳定性。

Low-pass whole genome sequencing of circulating tumor cells to evaluate chromosomal instability in triple-negative breast cancer.

机构信息

Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via Venezian 1, 20100, Milan, Italy.

Isinnova S.R.L, Brescia, Italy.

出版信息

Sci Rep. 2024 Sep 3;14(1):20479. doi: 10.1038/s41598-024-71378-3.

Abstract

Chromosomal Instability (CIN) is a common and evolving feature in breast cancer. Large-scale Transitions (LSTs), defined as chromosomal breakages leading to gains or losses of at least 10 Mb, have recently emerged as a metric of CIN due to their standardized definition across platforms. Herein, we report the feasibility of using low-pass Whole Genome Sequencing to assess LSTs, copy number alterations (CNAs) and their relationship in individual circulating tumor cells (CTCs) of triple-negative breast cancer (TNBC) patients. Initial assessment of LSTs in breast cancer cell lines consistently showed wide-ranging values (median 22, range 4-33, mean 21), indicating heterogeneous CIN. Subsequent analysis of CTCs revealed LST values (median 3, range 0-18, mean 5), particularly low during treatment, suggesting temporal changes in CIN levels. CNAs averaged 30 (range 5-49), with loss being predominant. As expected, CTCs with higher LSTs values exhibited increased CNAs. A CNA-based classifier of individual patient-derived CTCs, developed using machine learning, identified genes associated with both DNA proliferation and repair, such as RB1, MYC, and EXO1, as significant predictors of CIN. The model demonstrated a high predictive accuracy with an Area Under the Curve (AUC) of 0.89. Overall, these findings suggest that sequencing CTCs holds the potential to facilitate CIN evaluation and provide insights into its dynamic nature over time, with potential implications for monitoring TNBC progression through iterative assessments.

摘要

染色体不稳定性(CIN)是乳腺癌的常见且不断发展的特征。大规模转移(LST)最近作为 CIN 的度量标准出现,其定义为导致至少 10 Mb 的增益或损失的染色体断裂,由于其在平台间的标准化定义。在此,我们报告了使用低通全基因组测序来评估 LST、拷贝数改变(CNAs)及其在三阴性乳腺癌(TNBC)患者的单个循环肿瘤细胞(CTC)中的关系的可行性。对乳腺癌细胞系中的 LST 的初始评估一致显示出广泛的数值(中位数 22,范围 4-33,平均值 21),表明存在异质性 CIN。随后对 CTC 的分析显示 LST 值(中位数 3,范围 0-18,平均值 5),特别是在治疗期间较低,表明 CIN 水平随时间发生变化。CNAs 的平均值为 30(范围 5-49),以缺失为主。如预期的那样,LST 值较高的 CTC 表现出增加的 CNAs。使用机器学习开发的基于 CNA 的个体患者衍生 CTC 分类器,鉴定了与 DNA 增殖和修复相关的基因,如 RB1、MYC 和 EXO1,作为 CIN 的显著预测因子。该模型具有较高的预测准确性,曲线下面积(AUC)为 0.89。总体而言,这些发现表明测序 CTC 有可能促进 CIN 评估,并深入了解其随时间的动态变化,可能对通过迭代评估监测 TNBC 进展具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c79f/11372142/0dd5948cb696/41598_2024_71378_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验