Suppr超能文献

对商业医疗保健理赔数据进行基准测试。

Benchmarking commercial healthcare claims data.

作者信息

Dahlen Alex, Deng Yaowei, Charu Vivek

机构信息

Department of Biostatistics, School of Global Public Health, New York University, New York, NY.

Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA.

出版信息

medRxiv. 2024 Aug 20:2024.08.19.24312249. doi: 10.1101/2024.08.19.24312249.

Abstract

IMPORTANCE

Commercial healthcare claims datasets represent a sample of the US population that is biased along socioeconomic/demographic lines; depending on the target population of interest, results derived from these datasets may not generalize. Rigorous comparisons of claims-derived results to ground-truth data that quantify this bias are lacking.

OBJECTIVES

(1) To quantify the extent and variation of the bias associated with commercial healthcare claims data with respect to different target populations; (2) To evaluate how socioeconomic/demographic factors may explain the magnitude of the bias.

DESIGN

This is a retrospective observational study. Healthcare claims data come from the Merative MarketScan Commercial Database; reference data for comparison come from the State Inpatient Databases (SID) and the US Census. We considered three target populations, aged 18-64 years: (1) all Americans; (2) Americans with health insurance; (3) Americans with commercial health insurance.

PARTICIPANTS

We analyzed inpatient discharge records of patients aged 18-64 years, occurring between 01/01/2019 to 12/31/2019 in five states: California, Iowa, Maryland, Massachusetts, and New Jersey.

OUTCOMES

We estimated rates of the 250 most common inpatient procedures, using claims data and using reference data for each target population, and we compared the two estimates.

RESULTS

The average rate of inpatient discharges per 100 person-years was 5.39 in the claims data (95% CI: [5.37, 5.40]) and 7.003 (95% CI: [7.002, 7.004]) in the reference data for all Americans, corresponding to a 23.1% underestimate from claims. We found large variation in the extent of relative bias across inpatient procedures, including 22.8% of procedures that were underestimated by more than a factor of 2. There was a significant relationship between socioeconomic/demographic factors and the magnitude of bias: procedures that disproportionately occur in disadvantaged neighborhoods were more underestimated in claims data ( 51.6%, p < 0.001). When the target population was restricted to commercially insured Americans, the bias decreased substantially (3.2% of procedures were biased by more than factor of 2), but some variation across procedures remained.

CONCLUSIONS AND RELEVANCE

Naïve use of healthcare claims data to derive estimates for the underlying US population can be severely biased. The extent of bias is at least partially explained by neighborhood-level socioeconomic factors.

摘要

重要性

商业医疗保健索赔数据集代表了美国人口的一个样本,该样本在社会经济/人口特征方面存在偏差;根据感兴趣的目标人群不同,从这些数据集中得出的结果可能无法推广。目前缺乏对索赔得出的结果与能够量化这种偏差的真实数据进行严格比较。

目标

(1)量化与商业医疗保健索赔数据相关的偏差在不同目标人群中的程度和变化;(2)评估社会经济/人口因素如何解释偏差的大小。

设计

这是一项回顾性观察研究。医疗保健索赔数据来自默克多市场扫描商业数据库;用于比较的参考数据来自州住院数据库(SID)和美国人口普查。我们考虑了三个年龄在18 - 64岁的目标人群:(1)所有美国人;(2)有医疗保险的美国人;(3)有商业医疗保险的美国人。

参与者

我们分析了2019年1月1日至2019年12月31日期间加利福尼亚、爱荷华、马里兰、马萨诸塞和新泽西五个州18 - 64岁患者的住院出院记录。

结果

在索赔数据中,每100人年的平均住院出院率为5.39(95%置信区间:[5.37, 5.40]),在所有美国人的参考数据中为7.003(95%置信区间:[7.002, 7.004]),这意味着索赔数据低估了23.1%。我们发现不同住院程序的相对偏差程度差异很大,包括22.8%的程序被低估了两倍多。社会经济/人口因素与偏差大小之间存在显著关系:在贫困社区中不成比例出现的程序在索赔数据中被低估得更多(51.6%,p < 0.001)。当目标人群仅限于有商业保险的美国人时,偏差大幅下降(3.2%的程序偏差超过两倍),但各程序之间仍存在一些差异。

结论及意义

单纯使用医疗保健索赔数据来推断美国潜在人口的情况可能存在严重偏差。偏差程度至少部分由社区层面的社会经济因素所解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5581/11370529/4e679e3f194a/nihpp-2024.08.19.24312249v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验