Center for Biological Research Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain.
National Center for Biotechnology, Spanish National Research Council (CSIC), Madrid, Spain.
Front Public Health. 2024 Aug 15;12:1386596. doi: 10.3389/fpubh.2024.1386596. eCollection 2024.
SARS-CoV-2 variants are defined by specific genome-wide mutations compared to the Wuhan genome. However, non-clade-defining mutations may also impact protein structure and function, potentially leading to reduced vaccine effectiveness. Our objective is to identify mutations across the entire viral genome rather than focus on individual mutations that may be associated with vaccine failure and to examine the physicochemical properties of the resulting amino acid changes.
Whole-genome consensus sequences of SARS-CoV-2 from COVID-19 patients were retrieved from the GISAID database. Analysis focused on Dataset_1 (7,154 genomes from Italy) and Dataset_2 (8,819 sequences from Spain). Bioinformatic tools identified amino acid changes resulting from codon mutations with frequencies of 10% or higher, and sequences were organized into sets based on identical amino acid combinations.
Non-defining mutations in SARS-CoV-2 genomes belonging to clades 21 L (Omicron), 22B/22E (Omicron), 22F/23A (Omicron) and 21J (Delta) were associated with vaccine failure. Four sets of sequences from Dataset_1 were significantly linked to low vaccine coverage: one from clade 21L with mutations L3201F (ORF1a), A27- (S) and G30- (N); two sets shared by clades 22B and 22E with changes A27- (S), I68- (S), R346T (S) and G30- (N); and one set shared by clades 22F and 23A containing changes A27- (S), F486P (S) and G30- (N). Booster doses showed a slight improvement in protection against Omicron clades. Regarding 21J (Delta) two sets of sequences from Dataset_2 exhibited the combination of non-clade mutations P2046L (ORF1a), P2287S (ORF1a), L829I (ORF1b), T95I (S), Y145H (S), R158- (S) and Q9L (N), that was associated with vaccine failure.
Vaccine coverage associations appear to be influenced by the mutations harbored by marketed vaccines. An analysis of the physicochemical properties of amino acid revealed that primarily hydrophobic and polar amino acid substitutions occurred. Our results suggest that non-defining mutations across the proteome of SARS-CoV-2 variants could affect the extent of protection of the COVID-19 vaccine. In addition, alteration of the physicochemical characteristics of viral amino acids could potentially disrupt protein structure or function or both.
与武汉基因组相比,SARS-CoV-2 变体是通过特定的全基因组突变来定义的。然而,非谱系定义的突变也可能影响蛋白质结构和功能,从而可能导致疫苗效力降低。我们的目标是识别整个病毒基因组中的突变,而不是专注于可能与疫苗失败相关的单个突变,并研究由此产生的氨基酸变化的理化性质。
从 GISAID 数据库中检索了 COVID-19 患者的 SARS-CoV-2 全基因组共识序列。分析集中在数据集 1(来自意大利的 7154 个基因组)和数据集 2(来自西班牙的 8819 个序列)上。生物信息学工具确定了频率为 10%或更高的密码子突变导致的氨基酸变化,并且根据相同的氨基酸组合将序列组织成组。
属于谱系 21L(Omicron)、22B/22E(Omicron)、22F/23A(Omicron)和 21J(Delta)的 SARS-CoV-2 基因组中的非定义突变与疫苗失败有关。数据集 1 中的四个序列集与低疫苗覆盖率显著相关:一个来自谱系 21L,突变为 L3201F(ORF1a)、A27-(S)和 G30-(N);两个来自谱系 22B 和 22E 的序列集共享,变化为 A27-(S)、I68-(S)、R346T(S)和 G30-(N);一个来自谱系 22F 和 23A 的序列集共享,包含 A27-(S)、F486P(S)和 G30-(N)的变化。加强针剂量对 Omicron 谱系的保护作用略有提高。关于 21J(Delta),数据集 2 中的两个序列集表现出非谱系突变 P2046L(ORF1a)、P2287S(ORF1a)、L829I(ORF1b)、T95I(S)、Y145H(S)、R158-(S)和 Q9L(N)的组合,与疫苗失败有关。
疫苗覆盖率的关联似乎受到市场疫苗所携带突变的影响。对氨基酸理化性质的分析表明,主要发生了疏水性和极性氨基酸取代。我们的结果表明,SARS-CoV-2 变体全蛋白质组中的非定义突变可能会影响 COVID-19 疫苗的保护程度。此外,病毒氨基酸理化特性的改变可能会破坏蛋白质结构或功能,或两者兼而有之。