文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

乌兹别克斯坦临床样本中获得的 SARS-CoV-2 的基因组序列多样性。

Genome sequence diversity of SARS-CoV-2 obtained from clinical samples in Uzbekistan.

机构信息

Center for Advanced Technologies, Tashkent, Uzbekistan.

Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Qibray Region, Tashkent, Republic of Uzbekistan.

出版信息

PLoS One. 2022 Jun 27;17(6):e0270314. doi: 10.1371/journal.pone.0270314. eCollection 2022.


DOI:10.1371/journal.pone.0270314
PMID:35759503
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9236271/
Abstract

Tracking temporal and spatial genomic changes and evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are among the most urgent research topics worldwide, which help to elucidate the coronavirus disease 2019 (COVID-19) pathogenesis and the effect of deleterious variants. Our current study concentrates genetic diversity of SARS-CoV-2 variants in Uzbekistan and their associations with COVID-19 severity. Thirty-nine whole genome sequences (WGS) of SARS-CoV-2 isolated from PCR-positive patients from Tashkent, Uzbekistan for the period of July-August 2021, were generated and further subjected to further genomic analysis. Genome-wide annotations of clinical isolates from our study have revealed a total of 223 nucleotide-level variations including SNPs and 34 deletions at different positions throughout the entire genome of SARS-CoV-2. These changes included two novel mutations at the Nonstructural protein (Nsp) 13: A85P and Nsp12: Y479N, which were unreported previously. There were two groups of co-occurred substitution patterns: the missense mutations in the Spike (S): D614G, Open Reading Frame (ORF) 1b: P314L, Nsp3: F924, 5`UTR:C241T; Nsp3:P2046L and Nsp3:P2287S, and the synonymous mutations in the Nsp4:D2907 (C8986T), Nsp6:T3646A and Nsp14:A1918V regions, respectively. The "Nextstrain" clustered the largest number of SARS-CoV-2 strains into the Delta clade (n = 32; 82%), followed by two Alpha-originated (n = 4; 10,3%) and 20A (n = 3; 7,7%) clades. Geographically the Delta clade sample sequences were grouped into several clusters with the SARS-CoV genotypes from Russia, Denmark, USA, Egypt and Bangladesh. Phylogenetically, the Delta isolates in our study belong to the two main subclades 21A (56%) and 21J (44%). We found that females were more affected by 21A, whereas males by 21J variant (χ2 = 4.57; p ≤ 0.05, n = 32). The amino acid substitution ORF7a:P45L in the Delta isolates found to be significantly associated with disease severity. In conclusion, this study evidenced that Identified novel substitutions Nsp13: A85P and Nsp12: Y479N, have a destabilizing effect, while missense substitution ORF7a: P45L significantly associated with disease severity.

摘要

追踪严重急性呼吸系统综合症冠状病毒 2 型(SARS-CoV-2)的时空基因组变化和演化是全球最紧迫的研究课题之一,有助于阐明 2019 年冠状病毒病(COVID-19)的发病机制和有害变异的影响。我们目前的研究集中在乌兹别克斯坦 SARS-CoV-2 变异的遗传多样性及其与 COVID-19 严重程度的关系。从 2021 年 7 月至 8 月在乌兹别克斯坦塔什干从 PCR 阳性患者中分离出的 39 株 SARS-CoV-2 全长基因组(WGS)序列,进一步进行了基因组分析。对本研究中临床分离株的全基因组注释显示,在整个 SARS-CoV-2 基因组的不同位置总共存在 223 个核苷酸水平的变异,包括 SNP 和 34 个缺失。这些变化包括非结构蛋白(Nsp)13 中的两个新突变:A85P 和 Nsp12:Y479N,这两个突变以前没有报道过。有两组同时发生的取代模式:刺突(S)中的错义突变:D614G、开放阅读框(ORF)1b:P314L、Nsp3:F924、5`UTR:C241T;Nsp3:P2046L 和 Nsp3:P2287S,以及 Nsp4:D2907(C8986T)、Nsp6:T3646A 和 Nsp14:A1918V 区域的同义突变。“Nextstrain”将最大数量的 SARS-CoV-2 株聚类到德尔塔分支(n = 32;82%),其次是两个源自阿尔法的(n = 4;10.3%)和 20A 分支(n = 3;7.7%)。从地理上看,德尔塔分支的样本序列被分成几个簇,与来自俄罗斯、丹麦、美国、埃及和孟加拉国的 SARS-CoV 基因型有关。系统发育上,本研究中的德尔塔分离株属于两个主要亚分支 21A(56%)和 21J(44%)。我们发现,21A 变异更易影响女性,而 21J 变异则更易影响男性(χ2 = 4.57;p ≤ 0.05,n = 32)。在德尔塔分离株中发现的 ORF7a:P45L 氨基酸取代与疾病严重程度显著相关。总之,本研究表明,鉴定出的新型取代 Nsp13:A85P 和 Nsp12:Y479N 具有不稳定作用,而错义取代 ORF7a:P45L 则与疾病严重程度显著相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/af47bb60616b/pone.0270314.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/4384d0364f28/pone.0270314.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/5299d3186117/pone.0270314.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/b7430967e8d9/pone.0270314.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/e5b8f594cf30/pone.0270314.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/4cbf31dedb07/pone.0270314.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/38d39c5d2cbe/pone.0270314.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/46f19936f42d/pone.0270314.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/fe5435620788/pone.0270314.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/dea35939ce1a/pone.0270314.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/a4591a6f4668/pone.0270314.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/926e154d9ebd/pone.0270314.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/d7c1f027fe9f/pone.0270314.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/af47bb60616b/pone.0270314.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/4384d0364f28/pone.0270314.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/5299d3186117/pone.0270314.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/b7430967e8d9/pone.0270314.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/e5b8f594cf30/pone.0270314.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/4cbf31dedb07/pone.0270314.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/38d39c5d2cbe/pone.0270314.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/46f19936f42d/pone.0270314.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/fe5435620788/pone.0270314.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/dea35939ce1a/pone.0270314.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/a4591a6f4668/pone.0270314.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/926e154d9ebd/pone.0270314.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/d7c1f027fe9f/pone.0270314.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf3/9236271/af47bb60616b/pone.0270314.g013.jpg

相似文献

[1]
Genome sequence diversity of SARS-CoV-2 obtained from clinical samples in Uzbekistan.

PLoS One. 2022

[2]
Coronavirus Genomes and Unique Mutations in Structural and Non-Structural Proteins in Pakistani SARS-CoV-2 Delta Variants during the Fourth Wave of the Pandemic.

Genes (Basel). 2022-3-21

[3]
The extent of molecular variation in novel SARS-CoV-2 after the six-month global spread.

Infect Genet Evol. 2021-7

[4]
Genomic characterization of SARS-CoV-2 isolates from patients in Turkey reveals the presence of novel mutations in spike and nsp12 proteins.

J Med Virol. 2021-10

[5]
A Founder Effect Led Early SARS-CoV-2 Transmission in Spain.

J Virol. 2021-1-13

[6]
Phylogenetic and amino acid signature analysis of the SARS-CoV-2s lineages circulating in Tunisia.

Infect Genet Evol. 2022-8

[7]
Comparative insight into the genomic landscape of SARS-CoV-2 and identification of mutations associated with the origin of infection and diversity.

J Med Virol. 2021-4

[8]
Profiling of the most reliable mutations from sequenced SARS-CoV-2 genomes scattered in Uzbekistan.

PLoS One. 2022

[9]
Molecular epidemiology of SARS-CoV-2 isolated from COVID-19 family clusters.

BMC Med Genomics. 2021-6-1

[10]
Genome sequencing of SARS-CoV-2 in a cohort of Egyptian patients revealed mutation hotspots that are related to clinical outcomes.

Biochim Biophys Acta Mol Basis Dis. 2021-8-1

引用本文的文献

[1]
Wastewater sequencing from a rural community enables identification of widespread adaptive mutations in a SARS-CoV-2 alpha variant.

Sci Rep. 2025-5-28

[2]
Complete genome sequencing of SARS-CoV-2 strains that were circulating in Uzbekistan over the course of four pandemic waves.

PLoS One. 2024

[3]
Progressive Evolutionary Dynamics of Gene-Specific ω Led to the Emergence of Novel SARS-CoV-2 Strains Having Super-Infectivity and Virulence with Vaccine Neutralization.

Int J Mol Sci. 2024-6-7

[4]
Most accurate mutations in SARS-CoV-2 genomes identified in Uzbek patients show novel amino acid changes.

Front Med (Lausanne). 2024-5-31

本文引用的文献

[1]
The rise and spread of the SARS-CoV-2 AY.122 lineage in Russia.

Virus Evol. 2022-3-5

[2]
Profiling of the most reliable mutations from sequenced SARS-CoV-2 genomes scattered in Uzbekistan.

PLoS One. 2022

[3]
A Conservative Replacement in the Transmembrane Domain of SARS-CoV-2 ORF7a as a Putative Risk Factor in COVID-19.

Biology (Basel). 2021-12-5

[4]
Epidemiological associations with genomic variation in SARS-CoV-2.

Sci Rep. 2021-11-26

[5]
A Second Wave? What Do People Mean by COVID Waves? - A Working Definition of Epidemic Waves.

Risk Manag Healthc Policy. 2021-9-13

[6]
Mutational spectrum of SARS-CoV-2 during the global pandemic.

Exp Mol Med. 2021-8

[7]
Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses.

J Autoimmun. 2021-11

[8]
SARS-CoV-2 Spike Mutations, L452R, T478K, E484Q and P681R, in the Second Wave of COVID-19 in Maharashtra, India.

Microorganisms. 2021-7-20

[9]
SARS-CoV-2 Infectivity and Severity of COVID-19 According to SARS-CoV-2 Variants: Current Evidence.

J Clin Med. 2021-6-15

[10]
Activation of NF-κB and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2.

Sci Rep. 2021-6-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索