Tamura Ryo, Chen Jialin, De Jaeger Marijke, Morris Jacqueline F, Scott David A, Vangheluwe Peter, Looger Loren L
bioRxiv. 2024 Oct 16:2024.08.21.609037. doi: 10.1101/2024.08.21.609037.
Polyamines are abundant and physiologically essential biomolecules that play a role in numerous processes, but are disrupted in diseases such as cancer, and cardiovascular and neurological disorders. Despite their importance, measuring free polyamine concentrations and monitoring their metabolism and uptake in cells in real-time remains impossible due to the lack of appropriate biosensors. Here we engineered, characterized, and validated the first genetically encoded biosensors for polyamines, named iPASnFRs. We demonstrate the utility of iPASnFR for detecting polyamine import into mammalian cells, to the cytoplasm, mitochondria, and the nucleus. We demonstrate that these sensors are useful to probe the activity of polyamine transporters and to uncover biochemical pathways underlying the distribution of polyamines amongst organelles. The sensors powered a high-throughput small molecule compound library screen, revealing multiple compounds in different chemical classes that strongly modulate cellular polyamine levels. These sensors will be powerful tools to investigate the complex interplay between polyamine uptake and metabolic pathways, address open questions about their role in health and disease, and enable screening for therapeutic polyamine modulators.
多胺是丰富且生理上必需的生物分子,在众多过程中发挥作用,但在癌症、心血管疾病和神经疾病等病症中会受到干扰。尽管它们很重要,但由于缺乏合适的生物传感器,实时测量游离多胺浓度并监测其在细胞中的代谢和摄取仍然无法实现。在此,我们设计、表征并验证了首个用于多胺的基因编码生物传感器,名为iPASnFRs。我们展示了iPASnFR用于检测多胺导入哺乳动物细胞、细胞质、线粒体和细胞核的效用。我们证明这些传感器有助于探究多胺转运体的活性,并揭示多胺在细胞器间分布的生化途径。这些传感器助力了高通量小分子化合物库筛选,揭示了不同化学类别的多种化合物可强烈调节细胞多胺水平。这些传感器将成为强大的工具,用于研究多胺摄取与代谢途径之间的复杂相互作用,解决关于它们在健康和疾病中作用的悬而未决的问题,并实现对治疗性多胺调节剂的筛选。