Govind Rajan Ananth
Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
J Phys Chem Lett. 2024 Sep 12;15(36):9263-9271. doi: 10.1021/acs.jpclett.4c02400. Epub 2024 Sep 4.
Small systems consisting of a few particles are increasingly technologically relevant. In such systems, an intense debate in microcanonical statistical mechanics has been about the correctness of Boltzmann's surface entropy versus Gibbs' volume entropy. Both entropies have shortcomings─while Boltzmann entropy predicts unphysical negative/infinite absolute temperatures for small systems with an unbounded energy spectrum, Gibbs entropy entirely disallows negative absolute temperatures, in disagreement with experiments. We consider a relative energy window, motivated by the Heisenberg energy-time uncertainty principle and eigenstate thermalization in quantum mechanics. The proposed entropy ensures positive, finite temperatures for systems without a maximum limit on their energy and allows negative absolute temperatures in bounded energy spectrum systems, e.g., with population inversion. It also closely matches canonical ensemble predictions for prototypical systems, thus correctly describing the zero-point energy of an isolated quantum harmonic oscillator. Overall, we enable accurate thermodynamic models for isolated systems with few degrees of freedom.
由少数粒子组成的小系统在技术上的相关性日益增强。在这样的系统中,微正则统计力学中一场激烈的争论是关于玻尔兹曼表面熵与吉布斯体积熵的正确性。这两种熵都有缺点——虽然玻尔兹曼熵对于具有无界能谱的小系统预测出非物理的负/无限绝对温度,但吉布斯熵完全不允许负绝对温度,这与实验结果不一致。我们考虑一个由海森堡能量 - 时间不确定性原理和量子力学中的本征态热化所激发的相对能量窗口。所提出的熵确保了能量无上限的系统具有正的、有限的温度,并允许有界能谱系统(例如具有粒子数反转的系统)存在负绝对温度。它还与典型系统的正则系综预测紧密匹配,从而正确地描述了孤立量子谐振子的零点能。总体而言,我们为具有少数自由度的孤立系统建立了精确的热力学模型。