Yan Wenjun, Liu Yun, Bai Yan, Chen Yulong, Zhou Houpan, Ahmad Waqar
School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.
Faculty of Information, Liaoning University, Shenyang 110036, China.
ACS Appl Mater Interfaces. 2024 Sep 18;16(37):49474-49483. doi: 10.1021/acsami.4c07782. Epub 2024 Sep 4.
In this paper, we present the design and evaluation of an intelligent MEMS sensor employing the oxidized medium-entropy alloy (O-MEA) of FeCoNi as the gas-sensing material. Due to the specific catalytic exothermic reaction of the O-MEA on H/CO, the sensor shows great selectivity for H and CO at 150 °C of the integrated microheater in the MEMS device, with the theoretical detection limit of 0.3 ppm for H and 0.29 ppm for CO. The MEMS heater, capable of instantaneous temperature changes in pulse operation mode, offers a novel approach for thermal modulation of the sensor, which is crucial for the adsorption and reaction of H/CO molecules on the sensing layer surface. Consequently, we investigate the gas-sensing capabilities of the sensor under pulse heating modes (PHMs) of the MEMS heater and then propose the gas-sensing mechanism. The results indicate that PHMs significantly not only reduce the operating temperature and power consumption but also enhance the sensor's functionality by providing multivariable response signals, paving the way for intelligent gas detection. Based on the high selectivity to H and CO, transforming the transient sensing curves into two-dimensional images via Gramian Angular Field (GAF) model and subsequent modeling using a convolutional neural network (CNN) algorithm, we have realized efficient and intelligent recognition of H and CO. This work provides insight for the development of low-power, high-performance MEMS gas sensors and further intelligence of individual MEMS sensors.
在本文中,我们展示了一种采用FeCoNi氧化中熵合金(O-MEA)作为气敏材料的智能微机电系统(MEMS)传感器的设计与评估。由于O-MEA对H/CO具有特定的催化放热反应,该传感器在MEMS器件中集成微加热器150°C的温度下对H和CO表现出极大的选择性,H的理论检测限为0.3 ppm,CO的理论检测限为0.29 ppm。能够在脉冲操作模式下实现瞬时温度变化的MEMS加热器为传感器的热调制提供了一种新方法,这对于H/CO分子在传感层表面的吸附和反应至关重要。因此,我们研究了该传感器在MEMS加热器的脉冲加热模式(PHMs)下的气敏能力,然后提出了气敏机制。结果表明,PHMs不仅显著降低了工作温度和功耗,还通过提供多变量响应信号增强了传感器的功能,为智能气体检测铺平了道路。基于对H和CO的高选择性,通过格拉姆角场(GAF)模型将瞬态传感曲线转换为二维图像,并随后使用卷积神经网络(CNN)算法进行建模,我们实现了对H和CO的高效智能识别。这项工作为低功耗、高性能MEMS气体传感器的开发以及单个MEMS传感器的进一步智能化提供了思路。