Suppr超能文献

基于无人机视觉注意力和多尺度特征驱动的城市交通微小目标检测

Urban traffic tiny object detection via attention and multi-scale feature driven in UAV-vision.

作者信息

Wang Yangyang, Zhang Jie, Zhou Jian

机构信息

Academy of Military Sciences, Institute of Systems Engineering, Beijing, 100000, China.

出版信息

Sci Rep. 2024 Sep 4;14(1):20614. doi: 10.1038/s41598-024-71074-2.

Abstract

The unmanned aerial vehicle (UAV) city patrol is of great significance in ensuring the safety of residents' lives and properties, as well as maintaining the normal operation of the city. However, the detection of UAV images faces challenges such as numerous small-scale objects, complex backgrounds, and high requirements for detection speed. In response to these issues, we introduce a Real-time Small Object Detection network in UAV-vision (RTS-Net), tailored for UAV patrols. Initially, we introduce a multiscale feature fusion module (MFFM) designed to augment the expressiveness of features across scales, thereby enhancing the detection of smaller objects. Subsequently, leveraging attention mechanisms, we present the coordinated attention detection module (CADM), which bolsters the detection model's ability to accurately segregate objects from the background in expansive, complex scenarios. Lastly, a lightweight real-time feature extraction module (RFEM) is crafted to diminish model computational complexity and boost inference speed. On the UAV road patrol image dataset we constructed, our proposed method attains a detection accuracy of 89.9 mAP, breaking previous records. It surpasses all prevailing detection methods, particularly for small-scale objects. Simultaneously, it achieves an inference speed of 163.9 FPS. The experimental results show that RTS-Net can satisfy the accurate and efficient detection of ground objects by various different UAV platforms in different complex scenarios.

摘要

无人机城市巡逻对于保障居民生命财产安全以及维持城市正常运转具有重要意义。然而,无人机图像检测面临诸多挑战,如大量小尺度物体、复杂背景以及对检测速度的高要求。针对这些问题,我们引入了一种适用于无人机巡逻的无人机视觉实时小目标检测网络(RTS-Net)。首先,我们引入了一个多尺度特征融合模块(MFFM),旨在增强跨尺度特征的表现力,从而提升对较小物体的检测能力。随后,利用注意力机制,我们提出了协同注意力检测模块(CADM),该模块增强了检测模型在广阔复杂场景中从背景中准确分离物体的能力。最后,精心设计了一个轻量级实时特征提取模块(RFEM),以降低模型计算复杂度并提高推理速度。在我们构建的无人机道路巡逻图像数据集上,我们提出的方法实现了89.9 mAP的检测精度,打破了先前的记录。它超越了所有主流检测方法,尤其是对于小尺度物体。同时,它实现了163.9 FPS的推理速度。实验结果表明,RTS-Net能够满足不同复杂场景下各种不同无人机平台对地面物体进行准确高效检测的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402f/11374784/97297ffffb6d/41598_2024_71074_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验