College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
Sci Rep. 2024 Sep 4;14(1):20549. doi: 10.1038/s41598-024-71580-3.
The structural architecture of coral reefs is a known predictor of species richness, fish biomass and reef resilience. At a smaller scale, three-dimensional (3D) surface area of corals is a fundamental determinant of physical and biological processes. Quantifying the 3D surface area of corals has applications for a broad range of scientific disciplines, including carbonate production estimates, coral predation studies, and assessments of reef growth. Here, we present morphotaxon-specific conversion metrics to estimate total 3D surface area and projected 2D surface area of individual colonies from simple field measurements of colony maximum diameter. Underwater photogrammetry techniques were used to quantify surface area and estimate conversion metrics. Bayesian models showed strong non-linear (power) relationships between colony maximum diameter and both total 3D surface area and projected 2D surface area for 13 out of 15 morphotaxa. This study presents a highly resolved and efficient method for obtaining critical surface area assessments of corals for various applications, including assessments of biotic surface area, tissue biomass, calcification rates, coral demographic rates, and reef restoration monitoring.
珊瑚礁的结构架构是物种丰富度、鱼类生物量和珊瑚礁恢复力的已知预测因子。在较小的尺度上,珊瑚的三维(3D)表面积是物理和生物过程的基本决定因素。珊瑚的 3D 表面积的量化在广泛的科学学科中都有应用,包括碳酸盐产量估计、珊瑚捕食研究以及对珊瑚礁生长的评估。在这里,我们提出了形态分类特异性转换指标,以便根据珊瑚虫最大直径的简单野外测量值来估计单个珊瑚虫的总 3D 表面积和投影 2D 表面积。水下摄影测量技术用于量化表面积并估计转换指标。贝叶斯模型显示,在 15 个形态分类群中的 13 个中,珊瑚虫最大直径与总 3D 表面积和投影 2D 表面积之间存在很强的非线性(幂)关系。本研究提出了一种高度分辨率和高效的方法,用于获取各种应用中珊瑚的关键表面积评估,包括生物表面积、组织生物量、钙化率、珊瑚种群增长率和珊瑚礁恢复监测。