Suppr超能文献

一种基于抗深度学习攻击的磁性随机存取存储器物理不可克隆功能。

A robust deep learning attack immune MRAM-based physical unclonable function.

作者信息

Adel Mohammad Javad, Rezayati Mohammad Hadi, Moaiyeri Mohammad Hossein, Amirany Abdolah, Jafari Kian

机构信息

Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, 1983969411, Iran.

Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, USA.

出版信息

Sci Rep. 2024 Sep 4;14(1):20649. doi: 10.1038/s41598-024-71730-7.

Abstract

The ubiquitous presence of electronic devices demands robust hardware security mechanisms to safeguard sensitive information from threats. This paper presents a physical unclonable function (PUF) circuit based on magnetoresistive random access memory (MRAM). The circuit utilizes inherent characteristics arising from fabrication variations, specifically magnetic tunnel junction (MTJ) cell resistance, to produce corresponding outputs for applied challenges. In contrast to Arbiter PUF, the proposed effectively satisfies the strict avalanche criterion (SAC). Additionally, the grid-like structure of the proposed circuit preserves its resistance against machine learning-based modeling attacks. Various machine learning (ML) attacks employing multilayer perceptron (MLP), linear regression (LR), and support vector machine (SVM) networks are simulated for two-array and four-array architectures. The MLP-attack prediction accuracy was 53.61% for a two-array circuit and 49.87% for a four-array circuit, showcasing robust performance even under the worst-case process variations. In addition, deep learning-based modeling attacks in considerable high dimensions utilizing multiple networks such as convolutional neural network (CNN), recurrent neural network (RNN), MLP, and Larq are used with the accuracy of 50.31%, 50.25%, 50.31%, and 50.31%, respectively. The efficiency of the proposed circuit at the layout level is also investigated for simplified two-array architecture. The simulation results indicate that the proposed circuit offers intra and inter-hamming distance (HD) with a mean of 0.98% and 49.96%, respectively, and a mean diffuseness of 49.09%.

摘要

电子设备的广泛存在需要强大的硬件安全机制来保护敏感信息免受威胁。本文提出了一种基于磁阻随机存取存储器(MRAM)的物理不可克隆功能(PUF)电路。该电路利用制造工艺变化产生的固有特性,特别是磁隧道结(MTJ)单元电阻,为施加的挑战产生相应的输出。与仲裁器PUF相比,所提出的电路有效地满足了严格的雪崩准则(SAC)。此外,所提出电路的网格状结构使其能够抵御基于机器学习的建模攻击。针对两阵列和四阵列架构,模拟了采用多层感知器(MLP)、线性回归(LR)和支持向量机(SVM)网络的各种机器学习(ML)攻击。对于两阵列电路,MLP攻击预测准确率为53.61%,对于四阵列电路为49.87%,即使在最坏情况的工艺变化下也展现出强大的性能。此外,利用卷积神经网络(CNN)、递归神经网络(RNN)、MLP和Larq等多个网络在相当高维度下进行的基于深度学习的建模攻击,准确率分别为50.31%、50.25%、50.31%和50.31%。还针对简化的两阵列架构研究了所提出电路在布局层面的效率。仿真结果表明,所提出的电路提供的内部和外部汉明距离(HD)平均值分别为0.98%和49.96%,平均扩散度为49.09%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b0c/11374991/b4f165f9a9b8/41598_2024_71730_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验