Suppr超能文献

利用健康管理数据预测社区心理健康服务中的焦虑治疗效果。

Predicting anxiety treatment outcome in community mental health services using linked health administrative data.

机构信息

School of Population Health, Curtin University, Perth, WA, Australia.

Department of Health, Perth, WA, Australia.

出版信息

Sci Rep. 2024 Sep 4;14(1):20559. doi: 10.1038/s41598-024-71557-2.

Abstract

Anxiety disorders is ranked as the most common class of mental illness disorders globally, affecting hundreds of millions of people and significantly impacting daily life. Developing reliable predictive models for anxiety treatment outcomes holds immense potential to help guide the development of personalised care, optimise resource allocation and improve patient outcomes. This research investigates whether community mental health treatment for anxiety disorder is associated with reliable changes in Kessler psychological distress scale (K10) scores and whether pre-treatment K10 scores and past health service interactions can accurately predict reliable change (improvement). The K10 assessment was administered to 46,938 public patients in a community setting within the Western Australia dataset in 2005-2022; of whom 3794 in 4067 episodes of care were reassessed at least twice for anxiety disorders, obsessive-compulsive disorder, or reaction to severe stress and adjustment disorders (ICD-10 codes F40-F43). Reliable change on the K10 was calculated and used with the post-treatment score as the outcome variables. Machine learning models were developed using features from a large health service administrative linked dataset that includes the pre-treatment K10 assessment as well as community mental health episodes of care, emergency department presentations, and inpatient admissions for prediction. The classification model achieved an area under the receiver operating characteristic curve of 0.76 as well as an F1 score, precision and recall of 0.69, and the regression model achieved an R of 0.37 with mean absolute error of 5.58 on the test dataset. While the prediction models achieved moderate performance, they also underscore the necessity for regular patient monitoring and the collection of more clinically relevant and contextual patient data to further improve prediction of treatment outcomes.

摘要

焦虑障碍是全球最常见的精神疾病类别之一,影响着数亿人,严重影响着日常生活。开发可靠的焦虑治疗结果预测模型具有巨大的潜力,可以帮助指导个性化护理的发展、优化资源分配和改善患者预后。本研究调查了社区心理健康治疗焦虑症是否与 Kessler 心理困扰量表 (K10) 评分的可靠变化相关,以及治疗前 K10 评分和过去的医疗服务交互是否可以准确预测可靠变化(改善)。2005 年至 2022 年,在西澳大利亚数据集的社区环境中对 46938 名公共患者进行了 K10 评估;其中 4067 个疗程中有 3794 个至少两次重新评估了焦虑症、强迫症或严重应激和适应障碍(ICD-10 代码 F40-F43)。计算了 K10 的可靠变化,并将其与治疗后评分作为因变量。使用来自大型医疗服务管理链接数据集的特征开发了机器学习模型,该数据集包括治疗前的 K10 评估以及社区心理健康发作、急诊科就诊和住院治疗。分类模型在测试数据集上获得了 0.76 的接收器工作特征曲线下面积以及 0.69 的 F1 分数、精度和召回率,回归模型在测试数据集上获得了 0.37 的 R 和 5.58 的平均绝对误差。虽然预测模型的性能中等,但它们也强调了需要定期监测患者并收集更多临床相关和背景患者数据,以进一步提高治疗结果的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbf6/11375212/98c735eb1840/41598_2024_71557_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验