Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Jinying Road, Guangzhou 510640, China.
School of Biological Sciences and Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia.
Ecotoxicol Environ Saf. 2024 Oct 1;284:116978. doi: 10.1016/j.ecoenv.2024.116978. Epub 2024 Sep 3.
Flooding intensity significantly alters the availability of iron (Fe), zinc (Zn), and cadmium (Cd) in paddy soil. However, the influence of arbuscular mycorrhizal fungi (AMF) on the uptake and transfer of Cd and micronutrients (Fe and Zn) under Cd stress in varying flooding conditions is not well understood. A pot experiment was conducted to investigate the micronutrient homeostasis and Cd uptake and transfer in rice cultivated in Cd-contaminated soil with AMF inoculation under continuous and intermittent flooding conditions. Compared to non-inoculation controls, mycorrhizal inoculation decreased Cd concentration in rice plants under continuous and intermittent flooding, and improved grain yield by 39.2 % for early season rice and 21.1 % for late season rice under continuous flooding. Mycorrhizal inoculation balanced the availability of Zn and Fe and decreased the availability of Cd in soil, lowering the ratios of soil-available Cd to both soil-available Zn and soil Fe. These changes led to a redistribution of Zn and Fe concentrations in rice, thereby reducing Cd acquisition in a soil-rice system. Structural equation model (SEM) analysis revealed that mycorrhizal inoculation had a strong direct negative effect on the expression of Zn and Fe-related genes OsNRAMP1, OsIRT1, and OsIRT2 in the roots of rice, which in turn directly affected root Cd concentration. Furthermore, mycorrhizal colonization decreased Cd transfer coefficients from leaves to grains under continuous flooding and from nodes and leaves to grains under intermittent flooding. In the nodes, the Fe concentration and the expression of genes OsIRT1 and OsHMA2 were associated with Cd transfer from the nodes to grains. Similarly, in the leaves, the expression of genes OsZIP1 and OsMTP1 corresponded with Cd transfer from leaves to grains. This study provides insights into the role of AMF in affecting micronutrient concentrations and Cd uptake in rice under varying flooding conditions.
洪水强度显著改变了稻田中铁(Fe)、锌(Zn)和镉(Cd)的有效性。然而,在不同淹水条件下,丛枝菌根真菌(AMF)对 Cd 胁迫下水稻吸收和转运 Cd 及微量营养素(Fe 和 Zn)的影响尚不清楚。采用盆栽试验研究了丛枝菌根真菌接种对连续和间歇淹水条件下 Cd 污染土壤中水稻微量元素稳态和 Cd 吸收与转运的影响。与未接种对照相比,丛枝菌根真菌接种降低了连续和间歇淹水条件下水稻植株中的 Cd 浓度,连续淹水条件下早稻和晚稻的籽粒产量分别提高了 39.2%和 21.1%。丛枝菌根真菌接种平衡了 Zn 和 Fe 的有效性,降低了土壤中 Cd 的有效性,降低了土壤有效 Cd 与土壤有效 Zn 和土壤 Fe 的比值。这些变化导致了水稻中 Zn 和 Fe 浓度的再分配,从而减少了土壤-水稻系统中 Cd 的吸收。结构方程模型(SEM)分析表明,丛枝菌根真菌接种对水稻根系 Zn 和 Fe 相关基因 OsNRAMP1、OsIRT1 和 OsIRT2 的表达有强烈的直接负向影响,进而直接影响根 Cd 浓度。此外,丛枝菌根定殖降低了连续淹水条件下叶片到籽粒、间歇淹水条件下节点到籽粒和叶片到籽粒的 Cd 转移系数。在节点中,Fe 浓度和基因 OsIRT1 和 OsHMA2 的表达与 Cd 从节点向籽粒的转移有关。同样,在叶片中,基因 OsZIP1 和 OsMTP1 的表达与 Cd 从叶片向籽粒的转移相对应。本研究深入了解了 AMF 在不同淹水条件下对水稻吸收和转运 Cd 及微量元素浓度的影响。