Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kerala, 673635, India.
Department of Botany, MES KEVEEYAM College, Kerala, 676552, Valanchery, India.
Environ Sci Pollut Res Int. 2023 Jan;30(2):3668-3687. doi: 10.1007/s11356-022-22478-y. Epub 2022 Aug 11.
Arable lands getting contaminated with heavy metals have a very high negative impact on crop plants. The establishment of the mycorrhizal association with crop plants is a sustainable strategy to overcome metal toxicity. The major aim of this study was to analyze mycorrhizae-mediated alterations on the physiology and metabolism of Oryza sativa, as well as the impact of these alterations in the metal tolerance potential of the host on exposure to cadmium (Cd) and zinc (Zn) stresses. For this, 45 d old O. sativa (var. Varsha) plants inoculated with Claroideoglomus claroideum were exposed to 1.95 g Zn kg soil and 0.45 g Cd kg soil. Mycorrhization significantly increased shoot weight, root weight, moisture content, and chlorophyll biosynthesis under Cd and Zn stresses. Mycorrhization mitigated the oxidative stress elicited in O. sativa by the elevated Cd and Zn content, and it aided in maintaining the metabolite's level and rate of photosynthesis as compared to non-mycorrhizal plants. The circular-shaped unique structures seen as opening on the leaf surface of non-mycorrhizal plants under Zn stress, possibly for the emission of volatile compounds synthesized as a result of Zn stress, have a great chance of leaf tissue destruction. This structural modification was characterized in the case of Zn stress and not in Cd stress and can lead to the reduction of photosynthesis in O. sativa exposed to Zn stress. The reduction in oxidative stress could be correlated to the reduced uptake and transport of Cd and Zn ions in mycorrhizal plants. The exudation of tributyl acetyl citrate, 3-beta-acetoxystigmasta-4,6,22-triene, and linoleic acid from the mycorrhizal roots of rice plants has a crucial role in the stabilization of metal ions. This study proposes mycorrhization as a strategy to strengthen the Cd and Zn stress tolerance level of rice plants by regulating the physiology and metabolomics of the host plant.
受重金属污染的耕地对作物有很大的负面影响。与作物建立菌根共生关系是克服金属毒性的一种可持续策略。本研究的主要目的是分析菌根介导的对水稻生理和代谢的改变,以及这些改变对宿主金属耐受潜力的影响,即在暴露于镉(Cd)和锌(Zn)胁迫下。为此,将 45 天大的水稻(品种 Varsha)植株接种 Claroideoglomus claroideum,然后暴露于 1.95 g Zn kg 土壤和 0.45 g Cd kg 土壤中。在 Cd 和 Zn 胁迫下,菌根化显著增加了地上部重量、根重、含水量和叶绿素生物合成。菌根化减轻了 Cd 和 Zn 含量升高对水稻引起的氧化应激,并有助于维持代谢物水平和光合作用速率,与非菌根化植物相比。在 Zn 胁迫下,非菌根化植物叶片表面看到的圆形独特结构,可能是由于 Zn 胁迫下合成的挥发性化合物的排放而形成的开口,很有可能破坏叶片组织。这种结构修饰在 Zn 胁迫的情况下表现出来,而在 Cd 胁迫的情况下则没有,可能导致暴露于 Zn 胁迫下的水稻光合作用减少。氧化应激的减少可能与菌根化植物中 Cd 和 Zn 离子的吸收和转运减少有关。三丁酸乙酰柠檬酸、3-β-乙酰氧基豆甾-4,6,22-三烯和亚油酸从水稻菌根根的分泌在稳定金属离子方面起着关键作用。本研究提出通过调节宿主植物的生理和代谢组学,将菌根化作为一种增强水稻对 Cd 和 Zn 胁迫耐受性的策略。