Brigham and Womens Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard Humanitarian Initiative, Cambridge, MA, USA.
Brigham and Womens Hospital, Boston, MA, USA; Harvard Humanitarian Initiative, Cambridge, MA, USA.
EBioMedicine. 2024 Oct;108:105319. doi: 10.1016/j.ebiom.2024.105319. Epub 2024 Sep 3.
Individual immune responses to SARS-CoV-2 are well-studied, while the combined effect of these responses on population-level immune dynamics remains poorly understood. Given the key role of population immunity on pathogen transmission, delineation of the factors that drive population immune evolution has critical public health implications.
We enrolled individuals 5 years and older selected using a multistage cluster survey approach in the Northwest and Southeast of the Dominican Republic. Paired blood samples were collected mid-pandemic (Aug 2021) and late pandemic (Nov 2022). We measured serum pan-immunoglobulin antibodies against the SARS-CoV-2 spike protein. Generalized Additive Models (GAMs) and random forest models were used to analyze the relationship between changes in antibody levels and various predictor variables. Principal component analysis and partial dependence plots further explored the relationships between predictors and antibody changes.
We found a transformation in the distribution of antibody levels from an irregular to a normalized single peak Gaussian distribution that was driven by titre-dependent boosting. This led to the convergence of antibody levels around a common immune setpoint, irrespective of baseline titres and vaccination profile.
Our results suggest that titre-dependent kinetics driven by widespread transmission direct the evolution of population immunity in a consistent manner. These findings have implications for targeted vaccination strategies and improved modeling of future transmission, providing a preliminary blueprint for understanding population immune dynamics that could guide public health and vaccine policy for SARS-CoV-2 and potentially other pathogens.
The study was primarily funded by the Centers for Disease Control and Prevention grant U01GH002238 (EN). Salary support was provided by Wellcome Trust grant 206250/Z/17/Z (AK) and the Australian National Health and Medical Research Council Investigator grant APP1158469 (CLL).
人们对 SARS-CoV-2 的个体免疫反应进行了深入研究,而这些反应对人群免疫动态的综合影响仍知之甚少。鉴于人群免疫力对病原体传播的关键作用,明确驱动人群免疫进化的因素具有重要的公共卫生意义。
我们在多米尼加共和国的西北部和东南部采用多阶段聚类调查方法招募了 5 岁及以上的个体。在大流行中期(2021 年 8 月)和大流行后期(2022 年 11 月)采集了配对的血样。我们测量了针对 SARS-CoV-2 刺突蛋白的血清泛免疫球蛋白抗体。广义加性模型(GAMs)和随机森林模型用于分析抗体水平变化与各种预测变量之间的关系。主成分分析和部分依赖图进一步探讨了预测因子与抗体变化之间的关系。
我们发现,抗体水平的分布从不规则的多峰正态分布转变为依赖滴度的单峰正态分布,这是由滴度依赖性增强驱动的。这导致了抗体水平在一个共同的免疫基准点周围收敛,而与基线滴度和疫苗接种情况无关。
我们的结果表明,广泛传播驱动的滴度依赖性动力学以一致的方式指导人群免疫的进化。这些发现对靶向疫苗接种策略和改进未来传播模型具有重要意义,为理解人群免疫动态提供了初步蓝图,这可能为 SARS-CoV-2 和潜在其他病原体的公共卫生和疫苗政策提供指导。
该研究主要由美国疾病控制与预防中心授予的 U01GH002238 号赠款(EN)资助。工资支持由惠康信托基金 206250/Z/17/Z 号赠款(AK)和澳大利亚国家卫生和医学研究理事会研究员赠款 APP1158469 号(CLL)提供。