Xi'an Daxing Hospital, Shaanxi, China; International Doctoral School, University of Seville, Seville, Spain.
Xi'an Daxing Hospital, Shaanxi, China.
Neurologia (Engl Ed). 2024 Sep;39(7):573-583. doi: 10.1016/j.nrleng.2024.07.004.
Parkinson's disease (PD) is the one of the most common neurodegenerative diseases. Many investigators have confirmed the possibility of using circulating miRNAs to diagnose PD. However, the results were inconsistent. Therefore, the aim of this meta-analysis was to systematically evaluate the diagnostic accuracy of circulating miRNAs in the diagnosis of PD.
We carefully searched PubMed, Embase, Web of Science, Cochrane Library, Wanfang database and China National Knowledge Infrastructure for relevant studies (up to January 1, 2022) based on PRISMA statement. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), the diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to test the diagnostic accuracy. Furthermore, subgroup analyses were performed to identify the potential sources of heterogeneity, and the Deeks' funnel plot asymmetry test was used to evaluate the potential publication bias.
Forty-four eligible studies from 16 articles (3298 PD patients and 2529 healthy controls) were included in the current meta-analysis. The pooled sensitivity was 0.79 (95% CI: 0.76-0.81), specificity was 0.82 (95% CI: 0.78-0.84), PLR was 4.3 (95% CI: 3.6-5.0), NLR was 0.26 (95% CI: 0.23-0.30), DOR was 16 (95% CI: 13-21), and AUC was 0.87 (95% CI: 0.84-0.90). Subgroup analysis suggested that miRNA cluster showed a better diagnostic accuracy than miRNA simple. Moreover, there was no significant publication bias.
Circulating miRNAs have great potential as novel non-invasive biomarkers for PD diagnosis.
帕金森病(PD)是最常见的神经退行性疾病之一。许多研究人员已经证实,使用循环 miRNA 来诊断 PD 是可能的。然而,结果并不一致。因此,本荟萃分析的目的是系统评估循环 miRNA 对 PD 诊断的准确性。
我们根据 PRISMA 声明,仔细搜索了 PubMed、Embase、Web of Science、Cochrane 图书馆、万方数据库和中国国家知识基础设施,以查找截至 2022 年 1 月 1 日的相关研究。计算了合并的敏感性、特异性、阳性似然比(PLR)、阴性似然比(NLR)、诊断优势比(DOR)和曲线下面积(AUC),以检验诊断准确性。此外,还进行了亚组分析以确定潜在的异质性来源,并使用 Deeks' 漏斗图不对称检验评估潜在的发表偏倚。
本荟萃分析纳入了 16 篇文章中的 44 项符合条件的研究(3298 例 PD 患者和 2529 例健康对照者)。合并的敏感性为 0.79(95%CI:0.76-0.81),特异性为 0.82(95%CI:0.78-0.84),PLR 为 4.3(95%CI:3.6-5.0),NLR 为 0.26(95%CI:0.23-0.30),DOR 为 16(95%CI:13-21),AUC 为 0.87(95%CI:0.84-0.90)。亚组分析表明,miRNA 簇比 miRNA 简单具有更好的诊断准确性。此外,没有显著的发表偏倚。
循环 miRNA 作为 PD 诊断的新型非侵入性生物标志物具有很大的潜力。