Suppr超能文献

在部分聚类试验中,包括独立数据和配对数据,混合效应模型和广义估计方程对连续结果的表现。

Performance of mixed effects models and generalized estimating equations for continuous outcomes in partially clustered trials including both independent and paired data.

机构信息

School of Public Health, The University of Adelaide, Adelaide, South Australia, Australia.

Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.

出版信息

Stat Med. 2024 Nov 10;43(25):4819-4835. doi: 10.1002/sim.10201. Epub 2024 Sep 4.

Abstract

Many clinical trials involve partially clustered data, where some observations belong to a cluster and others can be considered independent. For example, neonatal trials may include infants from single or multiple births. Sample size and analysis methods for these trials have received limited attention. A simulation study was conducted to (1) assess whether existing power formulas based on generalized estimating equations (GEEs) provide an adequate approximation to the power achieved by mixed effects models, and (2) compare the performance of mixed models vs GEEs in estimating the effect of treatment on a continuous outcome. We considered clusters that exist prior to randomization with a maximum cluster size of 2, three methods of randomizing the clustered observations, and simulated datasets with uninformative cluster size and the sample size required to achieve 80% power according to GEE-based formulas with an independence or exchangeable working correlation structure. The empirical power of the mixed model approach was close to the nominal level when sample size was calculated using the exchangeable GEE formula, but was often too high when the sample size was based on the independence GEE formula. The independence GEE always converged and performed well in all scenarios. Performance of the exchangeable GEE and mixed model was also acceptable under cluster randomization, though under-coverage and inflated type I error rates could occur with other methods of randomization. Analysis of partially clustered trials using GEEs with an independence working correlation structure may be preferred to avoid the limitations of mixed models and exchangeable GEEs.

摘要

许多临床试验涉及部分聚类数据,其中一些观测值属于一个聚类,而其他观测值可以视为独立的。例如,新生儿试验可能包括来自单胎或多胎的婴儿。这些试验的样本量和分析方法受到的关注有限。我们进行了一项模拟研究,以评估以下两个方面:(1)基于广义估计方程 (GEE) 的现有功效公式是否可以充分逼近混合效应模型所达到的功效;(2)在估计治疗对连续结局的影响方面,混合模型与 GEE 的性能比较。我们考虑了在随机化之前存在的最大聚类大小为 2 的聚类,并随机化了聚类观测值的三种方法,以及模拟数据集,其中聚类大小和根据基于 GEE 的公式(具有独立或可交换的工作相关结构)计算达到 80%功效所需的样本量是无信息的。当使用可交换 GEE 公式计算样本量时,混合模型方法的经验功效接近名义水平,但当样本量基于独立 GEE 公式时,通常过高。独立 GEE 在所有情况下始终收敛且表现良好。在聚类随机化下,交换 GEE 和混合模型的性能也可以接受,尽管其他随机化方法可能会导致覆盖不足和Ⅰ型错误率膨胀。使用具有独立工作相关结构的 GEE 分析部分聚类试验可能是优选的,以避免混合模型和可交换 GEE 的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验