Suppr超能文献

基于炎症特征的急性A型主动脉夹层急性肺损伤诊疗一体化策略

Inflammatory signature-based theranostics for acute lung injury in acute type A aortic dissection.

作者信息

Liu Hong, Diao Yi-Fei, Qian Si-Chong, Shao Yong-Feng, Zhao Sheng, Li Hai-Yang, Zhang Hong-Jia

机构信息

Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 2100299, P.R. China.

Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China.

出版信息

PNAS Nexus. 2024 Aug 27;3(9):pgae371. doi: 10.1093/pnasnexus/pgae371. eCollection 2024 Sep.

Abstract

Acute lung injury (ALI) is a serious adverse event in the management of acute type A aortic dissection (ATAAD). Using a large-scale cohort, we applied artificial intelligence-driven approach to stratify patients with different outcomes and treatment responses. A total of 2,499 patients from China 5A study database (2016-2022) from 10 cardiovascular centers were divided into 70% for derivation cohort and 30% for validation cohort, in which extreme gradient boosting algorithm was used to develop ALI risk model. Logistic regression was used to assess the risk under anti-inflammatory strategies in different risk probability. Eight top features of importance (leukocyte, platelet, hemoglobin, base excess, age, creatinine, glucose, and left ventricular end-diastolic dimension) were used to develop and validate an ALI risk model, with adequate discrimination ability regarding area under the receiver operating characteristic curve of 0.844 and 0.799 in the derivation and validation cohort, respectively. By the individualized treatment effect prediction, ulinastatin use was significantly associated with significantly lower risk of developing ALI (odds ratio [OR] 0.623 [95% CI 0.456, 0.851]; = 0.003) in patients with a predicted ALI risk of 32.5-73.0%, rather than in pooled patients with a risk of <32.5 and >73.0% (OR 0.929 [0.682, 1.267], = 0.642) (Pinteraction = 0.075). An artificial intelligence-driven risk stratification of ALI following ATAAD surgery were developed and validated, and subgroup analysis showed the heterogeneity of anti-inflammatory pharmacotherapy, which suggested individualized anti-inflammatory strategies in different risk probability of ALI.

摘要

急性肺损伤(ALI)是急性A型主动脉夹层(ATAAD)治疗过程中的一种严重不良事件。我们利用一个大规模队列,采用人工智能驱动的方法对具有不同预后和治疗反应的患者进行分层。来自中国10个心血管中心的5A研究数据库(2016 - 2022年)中的2499例患者被分为70%作为推导队列和30%作为验证队列,其中使用极端梯度提升算法建立ALI风险模型。采用逻辑回归评估不同风险概率下抗炎策略的风险。利用八个重要的顶级特征(白细胞、血小板、血红蛋白、碱剩余、年龄、肌酐、葡萄糖和左心室舒张末期内径)建立并验证了一个ALI风险模型,该模型在推导队列和验证队列中的受试者操作特征曲线下面积分别为0.844和0.799,具有足够的区分能力。通过个体化治疗效果预测,在预测ALI风险为32.5% - 73.0%的患者中,使用乌司他丁与ALI发生风险显著降低显著相关(比值比[OR]为0.623[95%置信区间0.456, 0.851];P = 0.003),而在合并的风险<32.5%和>73.0%的患者中并非如此(OR为0.929[0.682, 1.267],P = 0.642)(交互作用P = 0.075)。我们建立并验证了一种基于人工智能的ATAAD手术后ALI风险分层方法,亚组分析显示了抗炎药物治疗的异质性,这表明在不同ALI风险概率下应采取个体化抗炎策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9bd/11373310/22ed5cfa8a48/pgae371f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验