Suppr超能文献

基于磁共振图像的椎间盘体积神经网络分割以及退变和脊柱节段的影响

Neural network segmentation of disc volume from magnetic resonance images and the effect of degeneration and spinal level.

作者信息

Markhali Milad I, Peloquin John M, Meadows Kyle D, Newman Harrah R, Elliott Dawn M

机构信息

Department of Biomedical Engineering University of Delaware Newark Delaware USA.

出版信息

JOR Spine. 2024 Sep 4;7(3):e70000. doi: 10.1002/jsp2.70000. eCollection 2024 Sep.

Abstract

BACKGROUND

Magnetic resonance imaging (MRI) noninvasively quantifies disc structure but requires segmentation that is both time intensive and susceptible to human error. Recent advances in neural networks can improve on manual segmentation. The aim of this study was to establish a method for automatic slice-wise segmentation of 3D disc volumes from subjects with a wide range of age and degrees of disc degeneration. A U-Net convolutional neural network was trained to segment 3D T1-weighted spine MRI.

METHODS

Lumbar spine MRIs were acquired from 43 subjects (23-83 years old) and manually segmented. A U-Net architecture was trained using the TensorFlow framework. Two rounds of model tuning were performed. The performance of the model was measured using a validation set that did not cross over from the training set. The model version with the best Dice similarity coefficient (DSC) was selected in each tuning round. After model development was complete and a final U-Net model was selected, performance of this model was compared between disc levels and degeneration grades.

RESULTS

Performance of the final model was equivalent to manual segmentation, with a mean DSC = 0.935 ± 0.014 for degeneration grades I-IV. Neither the manual segmentation nor the U-Net model performed as well for grade V disc segmentation. Compared with the baseline model at the beginning of round 1, the best model had fewer filters/parameters (75%), was trained using only slices with at least one disc-labeled pixel, applied contrast stretching to its input images, and used a greater dropout rate.

CONCLUSION

This study successfully trained a U-Net model for automatic slice-wise segmentation of 3D disc volumes from populations with a wide range of ages and disc degeneration. The final trained model is available to support scientific use.

摘要

背景

磁共振成像(MRI)可对椎间盘结构进行无创定量分析,但需要进行分割,这既耗时又容易出现人为误差。神经网络的最新进展可以改进手动分割。本研究的目的是建立一种方法,用于对不同年龄和椎间盘退变程度的受试者的三维椎间盘体积进行自动逐片分割。训练了一个U-Net卷积神经网络来分割三维T1加权脊柱MRI。

方法

从43名受试者(23-83岁)获取腰椎MRI并进行手动分割。使用TensorFlow框架训练U-Net架构。进行了两轮模型调整。使用未从训练集交叉过来的验证集测量模型的性能。在每个调整轮次中选择具有最佳骰子相似系数(DSC)的模型版本。在模型开发完成并选择最终的U-Net模型后,比较该模型在椎间盘水平和退变等级之间的性能。

结果

最终模型的性能与手动分割相当,退变等级I-IV的平均DSC = 0.935±0.014。对于V级椎间盘分割,手动分割和U-Net模型的表现都不佳。与第一轮开始时的基线模型相比,最佳模型的滤波器/参数更少(75%),仅使用至少有一个椎间盘标记像素的切片进行训练,对其输入图像应用对比度拉伸,并使用更高的随机失活率。

结论

本研究成功训练了一个U-Net模型,用于对不同年龄和椎间盘退变程度人群的三维椎间盘体积进行自动逐片分割。最终训练的模型可供科学使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dfb/11372286/6dbc7df9d31f/JSP2-7-e70000-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验