Suppr超能文献

脊柱-GFlow:一种无需手动标注的腰椎 MRI 多组织分割稳健混合学习框架。

Spine-GFlow: A hybrid learning framework for robust multi-tissue segmentation in lumbar MRI without manual annotation.

机构信息

Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.

Department of Computer Science, Faculty of Engineering, University of Hong Kong, Hong Kong, China.

出版信息

Comput Med Imaging Graph. 2022 Jul;99:102091. doi: 10.1016/j.compmedimag.2022.102091. Epub 2022 Jun 16.

Abstract

Most learning-based magnetic resonance image (MRI) segmentation methods rely on the manual annotation to provide supervision, which is extremely tedious, especially when multiple anatomical structures are required. In this work, we aim to develop a hybrid framework named Spine-GFlow that combines the image features learned by a CNN model and anatomical priors for multi-tissue segmentation in a sagittal lumbar MRI. Our framework does not require any manual annotation and is robust against image feature variation caused by different image settings and/or underlying pathology. Our contributions include: 1) a rule-based method that automatically generates the weak annotation (initial seed area), 2) a novel proposal generation method that integrates the multi-scale image features and anatomical prior, 3) a comprehensive loss for CNN training that optimizes the pixel classification and feature distribution simultaneously. Our Spine-GFlow has been validated on 2 independent datasets: HKDDC (containing images obtained from 3 different machines) and IVDM3Seg. The segmentation results of vertebral bodies (VB), intervertebral discs (IVD), and spinal canal (SC) are evaluated quantitatively using intersection over union (IoU) and the Dice coefficient. Results show that our method, without requiring manual annotation, has achieved a segmentation performance comparable to a model trained with full supervision (mean Dice 0.914 vs 0.916).

摘要

大多数基于学习的磁共振图像 (MRI) 分割方法都依赖于手动注释来提供监督,这非常繁琐,尤其是当需要多个解剖结构时。在这项工作中,我们旨在开发一种名为 Spine-GFlow 的混合框架,该框架结合了 CNN 模型学习的图像特征和矢状位腰椎 MRI 中多组织分割的解剖先验。我们的框架不需要任何手动注释,并且对不同图像设置和/或潜在病理学引起的图像特征变化具有鲁棒性。我们的贡献包括:1)一种基于规则的方法,可自动生成弱注释(初始种子区域),2)一种新的提案生成方法,可整合多尺度图像特征和解剖先验,3)一种用于 CNN 训练的综合损失,可同时优化像素分类和特征分布。我们的 Spine-GFlow 已经在两个独立的数据集上进行了验证:HKDDC(包含来自 3 台不同机器获得的图像)和 IVDM3Seg。使用交并比 (IoU) 和骰子系数对椎体 (VB)、椎间盘 (IVD) 和椎管 (SC) 的分割结果进行定量评估。结果表明,我们的方法无需手动注释,即可实现与完全监督训练的模型相当的分割性能(平均骰子系数为 0.914 对 0.916)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验