DeMarco Andrew G, Dibble Marcella G, Hall Mark C
Department of Biochemistry, Purdue University, West Lafayette, IN, United States.
Institute for Cancer Research, Purdue University, West Lafayette, IN, United States.
Front Cell Dev Biol. 2024 Aug 21;12:1451027. doi: 10.3389/fcell.2024.1451027. eCollection 2024.
Reversible protein phosphorylation is an abundant post-translational modification dynamically regulated by opposing kinases and phosphatases. Protein phosphorylation has been extensively studied in cell division, where waves of cyclin-dependent kinase activity, peaking in mitosis, drive the sequential stages of the cell cycle. Here we developed and employed a strategy to specifically probe kinase or phosphatase substrates at desired times or experimental conditions in the model organism .
We combined auxin-inducible degradation (AID) with mass spectrometry-based phosphoproteomics, which allowed us to arrest physiologically normal cultures in mitosis prior to rapid phosphatase degradation and phosphoproteome analysis.
Our results revealed that protein phosphatase 2A coupled with its B56 regulatory subunit, Rts1 (PP2A), is involved in dephosphorylation of numerous proteins in mitosis, highlighting the need for phosphatases to selectively maintain certain proteins in a hypophosphorylated state in the face of high mitotic kinase activity. Unexpectedly, we observed elevated phosphorylation at many sites on several subunits of the fungal eisosome complex following rapid Rts1 degradation. Eisosomes are dynamic polymeric assemblies that create furrows in the plasma membrane important in regulating nutrient import, lipid metabolism, and stress responses, among other things. We found that PP2A-mediated dephosphorylation of eisosomes promotes their plasma membrane association and we provide evidence that this regulation impacts eisosome roles in metabolic homeostasis. The combination of rapid, inducible protein degradation with proteomic profiling offers several advantages over common protein disruption methods for characterizing substrates of regulatory enzymes involved in dynamic biological processes.
可逆性蛋白质磷酸化是一种丰富的翻译后修饰,由相反的激酶和磷酸酶动态调节。蛋白质磷酸化在细胞分裂中已得到广泛研究,其中细胞周期蛋白依赖性激酶活性的波动在有丝分裂时达到峰值,驱动细胞周期的各个阶段。在这里,我们开发并采用了一种策略,在模式生物中所需的时间或实验条件下特异性探测激酶或磷酸酶底物。
我们将生长素诱导降解(AID)与基于质谱的磷酸蛋白质组学相结合,这使我们能够在快速磷酸酶降解和磷酸蛋白质组分析之前,使生理正常的培养物停滞在有丝分裂期。
我们的结果表明,与B56调节亚基Rts1结合的蛋白磷酸酶2A(PP2A)参与了有丝分裂中许多蛋白质的去磷酸化,这突出表明在有丝分裂激酶活性高的情况下,磷酸酶需要选择性地将某些蛋白质维持在低磷酸化状态。出乎意料的是,我们观察到在Rts1快速降解后,真菌内质体复合物的几个亚基上的许多位点磷酸化水平升高。内质体是动态聚合物组装体,在质膜上形成沟槽,对调节营养物质输入、脂质代谢和应激反应等方面很重要。我们发现PP2A介导的内质体去磷酸化促进了它们与质膜的结合,并且我们提供证据表明这种调节影响内质体在代谢稳态中的作用。快速、可诱导的蛋白质降解与蛋白质组分析相结合,相对于用于表征参与动态生物学过程的调节酶底物的常见蛋白质破坏方法具有几个优势。