Suppr超能文献

基于 FHIR 的 InterAgent - 借助 HL7 FHIR 实现智能辅导系统的经验教训。

InterAgent on FHIR - Lessons Learned from Implementing an Intelligent Tutoring System with the Help of HL7 FHIR.

机构信息

Institute for Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.

出版信息

Stud Health Technol Inform. 2024 Aug 30;317:152-159. doi: 10.3233/SHTI240851.

Abstract

INTRODUCTION

For an interoperable Intelligent Tutoring System (ITS), we used resources from Fast Healthcare Interoperability Resources (FHIR) and mapped learning content with Unified Medical Language System (UMLS) codes to enhance healthcare education. This study addresses the need to enhance the interoperability and effectiveness of ITS in healthcare education.

STATE OF THE ART

The current state of the art in ITS involves advanced personalized learning and adaptability techniques, integrating technologies such as machine learning to personalize the learning experience and to create systems that dynamically respond to individual learner needs. However, existing ITS architectures face challenges related to interoperability and integration with healthcare systems.

CONCEPT

Our system maps learning content with UMLS codes, each scored for similarity, ensuring consistency and extensibility. FHIR is used to standardize the exchange of medical information and learning content.

IMPLEMENTATION

Implemented as a microservice architecture, the system uses a recommender to request FHIR resources, provide questions, and measure learner progress.

LESSONS LEARNED

Using international standards, our ITS ensures reproducibility and extensibility, enhancing interoperability and integration with existing platforms.

摘要

简介

为了实现可互操作的智能辅导系统 (ITS),我们使用了 Fast Healthcare Interoperability Resources (FHIR) 的资源,并将学习内容与 Unified Medical Language System (UMLS) 代码进行映射,以增强医疗保健教育。本研究旨在解决医疗保健教育中增强 ITS 互操作性和有效性的需求。

现状

当前的 ITS 涉及先进的个性化学习和适应性技术,集成了机器学习等技术,以个性化学习体验并创建能够动态响应个体学习者需求的系统。然而,现有的 ITS 架构面临着与医疗系统的互操作性和集成相关的挑战。

概念

我们的系统使用 UMLS 代码对学习内容进行映射,每个代码都进行了相似性评分,以确保一致性和可扩展性。FHIR 用于标准化医疗信息和学习内容的交换。

实现

该系统作为一个微服务架构实现,使用推荐器来请求 FHIR 资源、提供问题并衡量学习者的进度。

经验教训

通过使用国际标准,我们的 ITS 确保了可重复性和可扩展性,增强了与现有平台的互操作性和集成性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验