文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 FHIR 的电子健康记录表型框架的开发:以从出院小结中识别肥胖且伴有多种合并症的患者为例。

Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries.

机构信息

Mayo Clinic, Rochester, MN, USA.

Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

出版信息

J Biomed Inform. 2019 Nov;99:103310. doi: 10.1016/j.jbi.2019.103310. Epub 2019 Oct 14.


DOI:10.1016/j.jbi.2019.103310
PMID:31622801
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6990976/
Abstract

BACKGROUND: Standards-based clinical data normalization has become a key component of effective data integration and accurate phenotyping for secondary use of electronic healthcare records (EHR) data. HL7 Fast Healthcare Interoperability Resources (FHIR) is an emerging clinical data standard for exchanging electronic healthcare data and has been used in modeling and integrating both structured and unstructured EHR data for a variety of clinical research applications. The overall objective of this study is to develop and evaluate a FHIR-based EHR phenotyping framework for identification of patients with obesity and its multiple comorbidities from semi-structured discharge summaries leveraging a FHIR-based clinical data normalization pipeline (known as NLP2FHIR). METHODS: We implemented a multi-class and multi-label classification system based on the i2b2 Obesity Challenge task to evaluate the FHIR-based EHR phenotyping framework. Two core parts of the framework are: (a) the conversion of discharge summaries into corresponding FHIR resources - Composition, Condition, MedicationStatement, Procedure and FamilyMemberHistory using the NLP2FHIR pipeline, and (b) the implementation of four machine learning algorithms (logistic regression, support vector machine, decision tree, and random forest) to train classifiers to predict disease state of obesity and 15 comorbidities using features extracted from standard FHIR resources and terminology expansions. We used the macro- and micro-averaged precision (P), recall (R), and F1 score (F1) measures to evaluate the classifier performance. We validated the framework using a second obesity dataset extracted from the MIMIC-III database. RESULTS: Using the NLP2FHIR pipeline, 1237 clinical discharge summaries from the 2008 i2b2 obesity challenge dataset were represented as the instances of the FHIR Composition resource consisting of 5677 records with 16 unique section types. After the NLP processing and FHIR modeling, a set of 244,438 FHIR clinical resource instances were generated. As the results of the four machine learning classifiers, the random forest algorithm performed the best with F1-micro(0.9466)/F1-macro(0.7887) and F1-micro(0.9536)/F1-macro(0.6524) for intuitive classification (reflecting medical professionals' judgments) and textual classification (reflecting the judgments based on explicitly reported information of diseases), respectively. The MIMIC-III obesity dataset was successfully integrated for prediction with minimal configuration of the NLP2FHIR pipeline and machine learning models. CONCLUSIONS: The study demonstrated that the FHIR-based EHR phenotyping approach could effectively identify the state of obesity and multiple comorbidities using semi-structured discharge summaries. Our FHIR-based phenotyping approach is a first concrete step towards improving the data aspect of phenotyping portability across EHR systems and enhancing interpretability of the machine learning-based phenotyping algorithms.

摘要

背景:基于标准的临床数据规范化已成为有效整合电子病历(EHR)数据和准确表型分析的关键组成部分。HL7 Fast Healthcare Interoperability Resources (FHIR) 是一种新兴的临床数据标准,用于交换电子医疗数据,并已用于对各种临床研究应用中的结构化和非结构化 EHR 数据进行建模和整合。本研究的总体目标是开发和评估一种基于 FHIR 的 EHR 表型分析框架,以利用基于 FHIR 的临床数据规范化管道(称为 NLP2FHIR)从半结构化出院总结中识别肥胖症及其多种合并症患者。

方法:我们实施了一个基于 i2b2 肥胖挑战任务的多类别和多标签分类系统,以评估基于 FHIR 的 EHR 表型分析框架。该框架的两个核心部分是:(a) 使用 NLP2FHIR 管道将出院总结转换为相应的 FHIR 资源 - Composition、Condition、MedicationStatement、Procedure 和 FamilyMemberHistory,以及 (b) 实施四种机器学习算法(逻辑回归、支持向量机、决策树和随机森林)来训练分类器,使用从标准 FHIR 资源和术语扩展中提取的特征来预测肥胖症和 15 种合并症的疾病状态。我们使用宏平均精度 (P)、召回率 (R) 和 F1 分数 (F1) 来评估分类器性能。我们使用从 MIMIC-III 数据库中提取的第二个肥胖数据集验证了该框架。

结果:使用 NLP2FHIR 管道,2008 年 i2b2 肥胖挑战数据集中的 1237 份临床出院总结表示为 FHIR Composition 资源的实例,该资源由 16 种唯一节类型的 5677 条记录组成。经过 NLP 处理和 FHIR 建模后,生成了一组 244438 个 FHIR 临床资源实例。作为四种机器学习分类器的结果,随机森林算法表现最佳,其 F1-micro(0.9466)/F1-macro(0.7887)和 F1-micro(0.9536)/F1-macro(0.6524)分别用于直观分类(反映医疗专业人员的判断)和文本分类(反映基于疾病明确报告信息的判断)。MIMIC-III 肥胖数据集成功集成用于预测,仅需对 NLP2FHIR 管道和机器学习模型进行最小配置。

结论:研究表明,基于 FHIR 的 EHR 表型分析方法可以使用半结构化出院总结有效识别肥胖症和多种合并症的状态。我们的基于 FHIR 的表型分析方法是朝着改善 EHR 系统之间表型可移植性的数据方面迈出的第一步,并增强了基于机器学习的表型分析算法的可解释性。

相似文献

[1]
Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries.

J Biomed Inform. 2019-10-14

[2]
Developing a scalable FHIR-based clinical data normalization pipeline for standardizing and integrating unstructured and structured electronic health record data.

JAMIA Open. 2019-10-18

[3]
Integration of NLP2FHIR Representation with Deep Learning Models for EHR Phenotyping: A Pilot Study on Obesity Datasets.

AMIA Jt Summits Transl Sci Proc. 2021

[4]
CQL4NLP: Development and Integration of FHIR NLP Extensions in Clinical Quality Language for EHR-driven Phenotyping.

AMIA Jt Summits Transl Sci Proc. 2021

[5]
Integrating Structured and Unstructured EHR Data Using an FHIR-based Type System: A Case Study with Medication Data.

AMIA Jt Summits Transl Sci Proc. 2018-5-18

[6]
MoCab: A framework for the deployment of machine learning models across health information systems.

Comput Methods Programs Biomed. 2024-10

[7]
Developing an FHIR-Based Computational Pipeline for Automatic Population of Case Report Forms for Colorectal Cancer Clinical Trials Using Electronic Health Records.

JCO Clin Cancer Inform. 2020-3

[8]
A Fast Healthcare Interoperability Resources (FHIR) layer implemented over i2b2.

BMC Med Inform Decis Mak. 2017-8-14

[9]
Electronic Health Record and Semantic Issues Using Fast Healthcare Interoperability Resources: Systematic Mapping Review.

J Med Internet Res. 2024-1-30

[10]
FHIR-Ontop-OMOP: Building clinical knowledge graphs in FHIR RDF with the OMOP Common data Model.

J Biomed Inform. 2022-10

引用本文的文献

[1]
Clinical applications of large language models in medicine and surgery: A scoping review.

J Int Med Res. 2025-7

[2]
State-of-the-Art Fast Healthcare Interoperability Resources (FHIR)-Based Data Model and Structure Implementations: Systematic Scoping Review.

JMIR Med Inform. 2024-9-24

[3]
Multilingual Framework for Risk Assessment and Symptom Tracking (MRAST).

Sensors (Basel). 2024-2-8

[4]
Electronic Health Record and Semantic Issues Using Fast Healthcare Interoperability Resources: Systematic Mapping Review.

J Med Internet Res. 2024-1-30

[5]
Automatic transparency evaluation for open knowledge extraction systems.

J Biomed Semantics. 2023-8-31

[6]
Hypothesis testing procedure for binary and multi-class F -scores in the paired design.

Stat Med. 2023-10-15

[7]
Electronic phenotypes to distinguish clinician attention to high body mass index, hypertension, lipid disorders, fatty liver and diabetes in pediatric primary care: Diagnostic accuracy of electronic phenotypes compared to masked comprehensive chart review.

Pediatr Obes. 2023-10

[8]
Interoperable and explainable machine learning models to predict morbidity and mortality in acute neurological injury in the pediatric intensive care unit: secondary analysis of the TOPICC study.

Front Pediatr. 2023-6-28

[9]
Smart Contract Authentication assisted GraphMap-Based HL7 FHIR architecture for interoperable e-healthcare system.

Heliyon. 2023-4-3

[10]
Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network.

Sci Rep. 2023-2-3

本文引用的文献

[1]
Considerations for Improving the Portability of Electronic Health Record-Based Phenotype Algorithms.

AMIA Annu Symp Proc. 2020-3-4

[2]
Scalable and accurate deep learning with electronic health records.

NPJ Digit Med. 2018-5-8

[3]
Developing a portable natural language processing based phenotyping system.

BMC Med Inform Decis Mak. 2019-4-4

[4]
Standardizing Heterogeneous Annotation Corpora Using HL7 FHIR for Facilitating their Reuse and Integration in Clinical NLP.

AMIA Annu Symp Proc. 2018-12-5

[5]
A case study evaluating the portability of an executable computable phenotype algorithm across multiple institutions and electronic health record environments.

J Am Med Inform Assoc. 2018-11-1

[6]
Integrating Structured and Unstructured EHR Data Using an FHIR-based Type System: A Case Study with Medication Data.

AMIA Jt Summits Transl Sci Proc. 2018-5-18

[7]
DeepPhe: A Natural Language Processing System for Extracting Cancer Phenotypes from Clinical Records.

Cancer Res. 2017-11-1

[8]
Machine Learning and Electronic Health Records: A Paradigm Shift.

Am J Psychiatry. 2017-2-1

[9]
MIMIC-III, a freely accessible critical care database.

Sci Data. 2016-5-24

[10]
Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers.

Stud Health Technol Inform. 2015

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索