Suppr超能文献

从临床系统中的通用数据结构中检索模式的挑战——技术案例报告。

Challenges in Retrieving Patterns from Generic Data Structures in Clinical Systems - A Technical Case Report.

机构信息

Institute for Medical Informatics and Biometry, Faculty of Medicine and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.

Data Integration Center, Center for Medical Informatics, University Hospital Carl Gustav Carus, Dresden, Germany.

出版信息

Stud Health Technol Inform. 2024 Aug 30;317:201-209. doi: 10.3233/SHTI240857.

Abstract

INTRODUCTION

The secondary use of data in clinical environments offers significant opportunities to enhance medical research and practices. However, extracting data from generic data structures, particularly the Entity-Attribute-Value (EAV) model, remains challenging. This study addresses these challenges by developing a methodological approach to convert EAV-based data into a format more suitable for analysis.

BACKGROUND

The EAV model is widely used in clinical information systems due to its adaptability, but it often complicates data retrieval for research purposes due to its vertical data structure and dynamic schema.

OBJECTIVE

The objective of this study is to develop a methodological approach to address the handling of these generic data structures, Methods: We introduce a five-step methodological approach: 1) understanding the specific clinical processes to determine data collection points and involved roles; 2) analysing the data source to understand the data structure and metadata; 3) reversing a use-case-specific data structure to map the front-end data input to its storage format; 4) analysing the content to identify medical information and establish connections; and 5) managing schema changes to maintain data integrity.

RESULTS

Applying this method to the hospital information system has shown that EAV-based data can be converted into a structured format, suitable for research. This conversion reduced data sparsity and improved the manageability of schema changes without affecting other classes of data.

CONCLUSION

The developed approach provides a systematic method for handling complex data relationships and maintaining data integrity in clinical systems using EAV models. This approach facilitates the secondary use of clinical data, enhancing its utility for medical research and practice.

摘要

简介

在临床环境中二次利用数据为增强医学研究和实践提供了重大机会。然而,从通用数据结构(特别是实体-属性-值 (EAV) 模型)中提取数据仍然具有挑战性。本研究通过开发一种方法来解决这些挑战,即将 EAV 为基础的数据转换为更适合分析的格式。

背景

由于 EAV 模型具有适应性,因此在临床信息系统中得到广泛应用,但由于其垂直数据结构和动态模式,通常会使数据检索变得复杂,不利于研究目的。

目的

本研究旨在开发一种方法来处理这些通用数据结构。

方法

我们引入了一个五步方法:1)了解特定的临床流程,以确定数据收集点和涉及的角色;2)分析数据源,了解数据结构和元数据;3)反向特定用例的数据结构,以将前端数据输入映射到其存储格式;4)分析内容,以识别医疗信息并建立连接;5)管理模式更改以维护数据完整性。

结果

将该方法应用于医院信息系统表明,EAV 为基础的数据可以转换为适合研究的结构化格式。这种转换减少了数据稀疏性,并提高了模式更改的可管理性,而不会影响其他类别的数据。

结论

所开发的方法为使用 EAV 模型处理复杂的数据关系和维护临床系统中的数据完整性提供了一种系统方法。这种方法促进了临床数据的二次利用,增强了其在医学研究和实践中的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验