文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能决策支持中的自动化偏差:一项实证研究的结果。

Automation Bias in AI-Decision Support: Results from an Empirical Study.

机构信息

Health Informatics Research Group, Osnabrück University of Applied Science, Osnabrück, Germany.

Department of New Public Health, Osnabrück University, Osnabrück, Germany.

出版信息

Stud Health Technol Inform. 2024 Aug 30;317:298-304. doi: 10.3233/SHTI240871.


DOI:10.3233/SHTI240871
PMID:39234734
Abstract

INTRODUCTION: Automation bias poses a significant challenge to the effectiveness of Clinical Decision Support Systems (CDSS), potentially compromising diagnostic accuracy. Previous research highlights trust, self-confidence, and task difficulty as key determinants. With the increasing availability of AI-enabled CDSS, automation bias attains new attention. This study therefore aims to identify factors influencing automation bias in a diagnostic task. METHODS: A quantitative intervention study with participants from different backgrounds (n = 210) was conducted, employing regression analysis to analyze potential factors. Automation bias was measured as the agreement rate with wrong AI-enabled recommendations. RESULTS AND DISCUSSION: Diagnostic performance, certified wound care training, physician profession, and female gender significantly reduced false agreement rates. Higher perceived benefit of the system was significantly associated with promoting false agreement. Strategies like comprehensive diagnostic training are pivotal in the prevention of automation bias when implementing CDSS. CONCLUSION: Considering factors influencing automation bias when introducing a CDSS is critical to fully leverage the benefits of such a system. This study highlights that non-specialists, who stand to gain the most from CDSS, are also the most susceptible to automation bias, emphasizing the need for specialized training to mitigate this risk and ensure diagnostic accuracy and patient safety.

摘要

简介:自动化偏差对临床决策支持系统(CDSS)的有效性构成重大挑战,可能会降低诊断准确性。先前的研究强调信任、自信和任务难度是关键决定因素。随着人工智能支持的 CDSS 的可用性不断增加,自动化偏差引起了新的关注。因此,本研究旨在确定影响诊断任务中自动化偏差的因素。

方法:采用来自不同背景的参与者(n=210)的定量干预研究,运用回归分析来分析潜在因素。自动化偏差通过与错误的人工智能推荐一致的比率来衡量。

结果与讨论:诊断性能、经过认证的伤口护理培训、医生职业和女性性别显著降低了错误一致率。更高的系统感知益处与促进错误一致显著相关。在实施 CDSS 时,综合诊断培训等策略对于防止自动化偏差至关重要。

结论:在引入 CDSS 时考虑影响自动化偏差的因素对于充分利用该系统的优势至关重要。本研究表明,最有可能从 CDSS 中受益的非专业人员也是最容易受到自动化偏差影响的人员,这强调了需要专门的培训来减轻这种风险,确保诊断准确性和患者安全。

相似文献

[1]
Automation Bias in AI-Decision Support: Results from an Empirical Study.

Stud Health Technol Inform. 2024-8-30

[2]
Automation bias: empirical results assessing influencing factors.

Int J Med Inform. 2014-1-17

[3]
Exploring the feasibility of an artificial intelligence based clinical decision support system for cutaneous melanoma detection in primary care - a mixed method study.

Scand J Prim Health Care. 2024-3

[4]
Artificial Intelligence-Augmented Clinical Decision Support Systems for Pregnancy Care: Systematic Review.

J Med Internet Res. 2024-9-16

[5]
Doctors' perception on the ethical use of AI-enabled clinical decision support systems for antibiotic prescribing recommendations in Singapore.

Front Public Health. 2024

[6]
A Clinical Decision Support System for Sleep Staging Tasks With Explanations From Artificial Intelligence: User-Centered Design and Evaluation Study.

J Med Internet Res. 2022-1-19

[7]
Artificial intelligence suppression as a strategy to mitigate artificial intelligence automation bias.

J Am Med Inform Assoc. 2023-9-25

[8]
Human Factors and Technological Characteristics Influencing the Interaction of Medical Professionals With Artificial Intelligence-Enabled Clinical Decision Support Systems: Literature Review.

JMIR Hum Factors. 2022-3-24

[9]
Artificial intelligence techniques applied to the development of a decision-support system for diagnosing celiac disease.

Int J Med Inform. 2011-9-13

[10]
Are physicians ready for precision antibiotic prescribing? A qualitative analysis of the acceptance of artificial intelligence-enabled clinical decision support systems in India and Singapore.

J Glob Antimicrob Resist. 2023-12

引用本文的文献

[1]
Artificial Intelligence in Primary Care: Support or Additional Burden on Physicians' Healthcare Work?-A Qualitative Study.

Clin Pract. 2025-7-25

[2]
Diagnostic accuracy differences in detecting wound maceration between humans and artificial intelligence: the role of human expertise revisited.

J Am Med Inform Assoc. 2025-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索