Suppr超能文献

用于孕期护理的人工智能增强型临床决策支持系统:系统评价

Artificial Intelligence-Augmented Clinical Decision Support Systems for Pregnancy Care: Systematic Review.

作者信息

Lin Xinnian, Liang Chen, Liu Jihong, Lyu Tianchu, Ghumman Nadia, Campbell Berry

机构信息

School of Education, Fuzhou University of International Studies and Trade, Fuzhou, China.

Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA, United States.

出版信息

J Med Internet Res. 2024 Sep 16;26:e54737. doi: 10.2196/54737.

Abstract

BACKGROUND

Despite the emerging application of clinical decision support systems (CDSS) in pregnancy care and the proliferation of artificial intelligence (AI) over the last decade, it remains understudied regarding the role of AI in CDSS specialized for pregnancy care.

OBJECTIVE

To identify and synthesize AI-augmented CDSS in pregnancy care, CDSS functionality, AI methodologies, and clinical implementation, we reported a systematic review based on empirical studies that examined AI-augmented CDSS in pregnancy care.

METHODS

We retrieved studies that examined AI-augmented CDSS in pregnancy care using database queries involved with titles, abstracts, keywords, and MeSH (Medical Subject Headings) terms. Bibliographic records from their inception to 2022 were retrieved from PubMed/MEDLINE (n=206), Embase (n=101), and ACM Digital Library (n=377), followed by eligibility screening and literature review. The eligibility criteria include empirical studies that (1) developed or tested AI methods, (2) developed or tested CDSS or CDSS components, and (3) focused on pregnancy care. Data of studies used for review and appraisal include title, abstract, keywords, MeSH terms, full text, and supplements. Publications with ancillary information or overlapping outcomes were synthesized as one single study. Reviewers independently reviewed and assessed the quality of selected studies.

RESULTS

We identified 30 distinct studies of 684 studies from their inception to 2022. Topics of clinical applications covered AI-augmented CDSS from prenatal, early pregnancy, obstetric care, and postpartum care. Topics of CDSS functions include diagnostic support, clinical prediction, therapeutics recommendation, and knowledge base.

CONCLUSIONS

Our review acknowledged recent advances in CDSS studies including early diagnosis of prenatal abnormalities, cost-effective surveillance, prenatal ultrasound support, and ontology development. To recommend future directions, we also noted key gaps from existing studies, including (1) decision support in current childbirth deliveries without using observational data from consequential fetal or maternal outcomes in future pregnancies; (2) scarcity of studies in identifying several high-profile biases from CDSS, including social determinants of health highlighted by the American College of Obstetricians and Gynecologists; and (3) chasm between internally validated CDSS models, external validity, and clinical implementation.

摘要

背景

尽管临床决策支持系统(CDSS)在孕期护理中的应用不断涌现,且在过去十年中人工智能(AI)迅速发展,但关于AI在专门用于孕期护理的CDSS中的作用仍研究不足。

目的

为了识别和综合孕期护理中AI增强的CDSS、CDSS功能、AI方法和临床应用,我们基于实证研究进行了一项系统综述,该研究考察了孕期护理中AI增强的CDSS。

方法

我们使用涉及标题、摘要、关键词和医学主题词(MeSH)的数据库查询检索了考察孕期护理中AI增强的CDSS的研究。从PubMed/MEDLINE(n = 206)、Embase(n = 101)和ACM数字图书馆(n = 377)检索了从其创建到2022年的文献记录,随后进行资格筛选和文献综述。资格标准包括实证研究,即(1)开发或测试AI方法,(2)开发或测试CDSS或CDSS组件,以及(3)专注于孕期护理。用于综述和评估的研究数据包括标题、摘要、关键词、MeSH词、全文和补充材料。具有辅助信息或重叠结果的出版物被综合为一项单一研究。评审人员独立评审并评估所选研究的质量。

结果

我们从其创建到2022年的684项研究中确定了30项不同的研究。临床应用主题涵盖了产前、早孕、产科护理和产后护理中的AI增强CDSS。CDSS功能主题包括诊断支持、临床预测、治疗建议和知识库。

结论

我们的综述认可了CDSS研究的最新进展,包括产前异常的早期诊断、经济有效的监测、产前超声支持和本体开发。为了推荐未来的方向,我们还指出了现有研究的关键差距,包括(1)当前分娩中的决策支持未使用未来妊娠中胎儿或母亲后续结局的观察数据;(2)在识别CDSS中的几种重大偏差方面研究稀缺,包括美国妇产科医师学会强调的健康的社会决定因素;以及(3)内部验证的CDSS模型、外部有效性和临床应用之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae4e/11443205/97cda54b3782/jmir_v26i1e54737_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验