Li Jie, Zhang Yuefan, Hu Mengyun, Ye Changqing, Du Yukou
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P.R. China.
Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China.
ACS Appl Mater Interfaces. 2024 Sep 18;16(37):48846-48853. doi: 10.1021/acsami.4c11658. Epub 2024 Sep 5.
Developing efficient Pd-based electrocatalysts is of vital importance for the application of direct alcohol fuel cells. Designing the core-shell architecture of Pd-based nanomaterials rationally has emerged as an effective strategy to promote the sluggish kinetics of anodic reactions. Herein, the PdAg alloy is reduced on a non-noble metal oxide surface for the formation of a core-shell nanostructure. The optimized SnO@PdAg nanospheres deliver the optimal catalytic performance compared with other counterparts and commercial Pd/C. The structural investigation reveals that the introduction of Ag and formation of a PdAg/SnO heterointerface effectively regulate the electronic structure of Pd, making SnO@PdAg a highly active catalyst for methanol and ethylene glycol oxidation reactions. Impressively, the strong interaction between the PdAg shell and SnO core stabilizes the metal-oxide heterointerface, contributing to the improved stability of SnO@PdAg in electrocatalytic reactions. This study proposes the use of non-noble metal oxides as the core to suppress the dissolution of the catalysts and highlights the rational design of core@shell nanoarchitectures.
开发高效的钯基电催化剂对于直接醇类燃料电池的应用至关重要。合理设计钯基纳米材料的核壳结构已成为促进阳极反应缓慢动力学的有效策略。在此,钯银合金在非贵金属氧化物表面还原以形成核壳纳米结构。与其他同类材料和商业钯碳相比,优化后的SnO@PdAg纳米球具有最佳的催化性能。结构研究表明,银的引入和PdAg/SnO异质界面的形成有效地调节了钯的电子结构,使SnO@PdAg成为甲醇和乙二醇氧化反应的高活性催化剂。令人印象深刻的是,PdAg壳与SnO核之间的强相互作用稳定了金属氧化物异质界面,有助于提高SnO@PdAg在电催化反应中的稳定性。本研究提出使用非贵金属氧化物作为核心来抑制催化剂的溶解,并强调了核壳纳米结构的合理设计。