Xu Huimin, Wang Lei, Chen Linjie, Ma Xiaochuan, Hu Wei, Zhao Jin, Tan Shijing, Wang Bing
Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China.
Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
J Phys Chem Lett. 2024 Sep 12;15(36):9272-9279. doi: 10.1021/acs.jpclett.4c02189. Epub 2024 Sep 5.
Stable anchoring of dispersed metal atoms through either surface adsorption or lattice substitution on support surfaces is a prerequisite for highly efficient catalytic performance. Atomic-level insights into these processes are necessary to understand the metal-support interactions. Here, we identify multiple Fe single-atom configurations on the rutile-TiO(110) surface using scanning tunneling microscopy (STM) and density functional theory (DFT). Our results show that an Fe atom can either adsorb on a surface O site (configuration I) or stably substitute a surface lattice Ti atom (configuration II). A transformation from configuration I to configuration II can be induced by STM manipulation. Furthermore, the substitutional Fe atom can capture an additional Fe atom to form a dual Fe-Fe complex (configuration III). DFT calculations reveal that these Fe species contribute different states in either the bandgap or the conduction band. These atomistic insights pave the way for interrogating the integrated performance of nonprecious, TiO-supported Fe single-atom catalysts.
通过表面吸附或晶格取代将分散的金属原子稳定锚定在载体表面上,是实现高效催化性能的前提条件。深入了解这些过程的原子级信息对于理解金属-载体相互作用至关重要。在此,我们使用扫描隧道显微镜(STM)和密度泛函理论(DFT)确定了金红石型TiO(110)表面上的多种铁单原子构型。我们的结果表明,一个铁原子可以吸附在表面氧位点上(构型I),也可以稳定地取代表面晶格钛原子(构型II)。STM操作可以诱导构型I向构型II转变。此外,取代的铁原子可以捕获另一个铁原子形成双铁-铁络合物(构型III)。DFT计算表明,这些铁物种在带隙或导带中贡献不同的状态。这些原子级的见解为研究非贵金属、TiO负载的铁单原子催化剂的综合性能铺平了道路。