Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
J Chem Inf Model. 2024 Sep 23;64(18):6927-6937. doi: 10.1021/acs.jcim.4c01169. Epub 2024 Sep 5.
The fragment molecular orbital (FMO) method is an efficient quantum chemical calculation technique for large biomolecules, dividing each into smaller fragments and providing interfragment interaction energies (IFIEs) that support our understanding of molecular recognition. The fragment MO method (ABINIT-MP), an FMO processing program, can automatically divide typical proteins and nucleic acids. In contrast, small molecules such as ligands and heterosystems must be manually divided. Thus, we developed a graphical user interface to easily handle such manual fragmentation as a library for the Molecular Operating Environment (MOE) that preprocesses and visualizes FMO calculations. We demonstrated fragmentation with IFIE analyses for the two following cases: (1) covalent cysteine-ligand bonding inside the SARS-CoV-2 main protease (M) and nirmatrelvir (Paxlovid) complex and (2) the metal coordination inside a zinc-bound cyclic peptide. IFIE analysis successfully identified the key amino acid residues for the molecular recognition of nirmatrelvir with M and the details of their interactions (e.g., hydrogen bonds and CH/π interactions) via ligand fragmentation of functional group units. In metalloproteins, we found an efficient and accurate scheme for the fragmentation of Zn ions with four histidines coordinated to the ion. FMOe simplifies manual fragmentation, allowing users to experiment with various fragmentation patterns and perform in-depth IFIE analysis with high accuracy. In the future, our findings will provide valuable insight into complicated cases, such as ligand fragmentation in modality drug discovery, especially for medium-sized molecules and metalloprotein fragmentation around metals.
片段分子轨道 (FMO) 方法是一种用于大型生物分子的高效量子化学计算技术,将每个分子划分为更小的片段,并提供片段间相互作用能 (IFIE),支持我们对分子识别的理解。片段 MO 方法 (ABINIT-MP) 是一种 FMO 处理程序,可以自动划分典型的蛋白质和核酸。相比之下,配体和杂体系等小分子必须手动划分。因此,我们开发了一个图形用户界面,以便轻松处理此类手动片段作为分子操作环境 (MOE) 的库,用于预处理和可视化 FMO 计算。我们通过 IFIE 分析展示了以下两种情况的片段化:(1) SARS-CoV-2 主蛋白酶 (M) 和奈玛特韦 (Paxlovid) 复合物内的共价半胱氨酸配体键合,以及 (2) 锌结合环肽内的金属配位。IFIE 分析成功识别了奈玛特韦与 M 分子识别的关键氨基酸残基及其相互作用的细节(例如氢键和 CH/π 相互作用),通过配体的功能基团单元的片段化。在金属蛋白酶中,我们发现了一种用于与四个组氨酸配位的锌离子的有效且准确的片段化方案。FMOe 简化了手动片段化,允许用户尝试各种片段化模式,并进行深入的 IFIE 分析,具有高精度。在未来,我们的发现将为复杂情况提供有价值的见解,例如模式药物发现中的配体片段化,特别是对于中等大小的分子和金属周围的金属蛋白酶片段化。