Chiu Yu-Hsuan, Chung Ren-Jei, Kongvarhodom Chutima, Saukani Muhammad, Yougbaré Sibidou, Chen Hung-Ming, Wu Yung-Fu, Lin Lu-Yin
Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
Department of Chemical Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha-u-thit, Toong-kru, Bangkok 10140, Thailand.
ACS Appl Mater Interfaces. 2024 Sep 18;16(37):49249-49261. doi: 10.1021/acsami.4c07117. Epub 2024 Sep 5.
Bismuth vanadate (BVO) having suitable band edges is one of the effective photocatalysts for water oxidation, which is the rate-determining step in the water splitting process. Incorporating cocatalysts can reduce activation energy, create hole sinks, and improve photocatalytic ability of BVO. In this work, the visible light active nickel tellurium oxide (NTO) is used as the cocatalyst on the BVO photoanode to improve photocatalytic properties. Different NTO amounts are deposited on the BVO to balance optical and electrical contributions. Higher visible light absorbance and effective charge cascades are developed in the NTO and BVO composite (NTO/BVO). The highest photocurrent density of 6.05 mA/cm at 1.23 V versus reversible hydrogen electrode (V) and the largest applied bias photon-to-current efficiency (ABPE) of 2.13% are achieved for NTO/BVO, while BVO shows a photocurrent density of 4.19 mA/cm at 1.23 V and ABPE of 1.54%. Excellent long-term stability under light illumination is obtained for NTO/BVO with photocurrent retention of 91.31% after 10,000 s. The photoelectrochemical catalytic mechanism of NTO/BVO is also proposed based on measured band structures and possible interactions between NTO and BVO. This work has depicted a novel cocatalytic BVO system with a new photocharging material and successfully achieves high photocurrent densities for catalyzing water oxidation.
具有合适能带边缘的钒酸铋(BVO)是用于水氧化的有效光催化剂之一,水氧化是水分解过程中的速率决定步骤。引入助催化剂可以降低活化能、形成空穴陷阱并提高BVO的光催化能力。在这项工作中,可见光活性氧化镍碲(NTO)被用作BVO光阳极上的助催化剂以改善光催化性能。不同量的NTO沉积在BVO上以平衡光学和电学贡献。在NTO与BVO的复合材料(NTO/BVO)中实现了更高的可见光吸收率和有效的电荷级联。相对于可逆氢电极(V),NTO/BVO在1.23 V时实现了最高光电流密度6.05 mA/cm²以及最大的外加偏压光子到电流效率(ABPE)2.13%,而BVO在1.23 V时的光电流密度为4.19 mA/cm²,ABPE为1.54%。NTO/BVO在光照下具有出色的长期稳定性,10000 s后光电流保留率为91.31%。基于测量的能带结构以及NTO与BVO之间可能的相互作用,还提出了NTO/BVO的光电化学催化机理。这项工作描绘了一种具有新型光充电材料的新型助催化BVO体系,并成功实现了用于催化水氧化的高光电流密度。