Liu Shih-Hsien, Rukmani Shalini J, Mohan Mood, Yu Yan, Vural Derya, Johnson Donna A, Copenhaver Katie, Bhagia Samarthya, Lamm Meghan E, Li Kai, Chen Jihua, Goswami Monojoy, Smith Micholas Dean, Petridis Loukas, Ozcan Soydan, Smith Jeremy C
University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996.
Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2405107121. doi: 10.1073/pnas.2405107121. Epub 2024 Sep 5.
The outstanding mechanical properties, light weight, and biodegradability of cellulose nanofibrils (CNFs) make them promising components of renewable and sustainable next-generation reinforced composite biomaterials and bioplastics. Manufacturing CNFs at a pilot scale requires disc-refining fibrillation of dilute cellulose fibers in aqueous pulp suspensions to shear the fibers apart into their nanodimensional forms, which is, however, an energy-intensive process. Here, we used atomistic molecular dynamics (MD) simulation to examine media that might facilitate the reduction of interactions between cellulose fibers, thereby reducing energy consumption in fibrillation. The most suitable medium found by the simulations was an aqueous solution with 0.007:0.012 wt.% NaOH:urea, and indeed this was found in pilot-scale experiments to reduce the fibrillation energy by ~21% on average relative to water alone. The NaOH:urea-mediated CNFs have similar crystallinity, morphology, and mechanical strength to those formed in water. The NaOH and urea act synergistically on CNFs to aid fibrillation but at different length scales. NaOH deprotonates hydroxyl groups leading to mesoscale electrostatic repulsion between fibrils, whereas urea forms hydrogen bonds with protonated hydroxyl groups thus disrupting interfibril hydrogen bonds. This suggests a general mechanism in which an aqueous medium that contains a strong base and a small organic molecule acting as a hydrogen-bond acceptor and/or donor may be effectively employed in materials processes where dispersion of deprotonable polymers is required. The study demonstrates how atomic-detail computer simulation can be integrated with pilot-scale experiments in the rational design of materials processes for the circular bioeconomy.
纤维素纳米纤丝(CNFs)出色的机械性能、轻质特性和生物降解性,使其成为可再生且可持续的下一代增强复合生物材料和生物塑料的理想组成部分。在中试规模下制造CNFs需要对水相纸浆悬浮液中的稀纤维素纤维进行盘磨纤维化处理,以便将纤维剪切成纳米尺寸的形态,然而,这是一个能源密集型过程。在此,我们使用原子分子动力学(MD)模拟来研究可能有助于减少纤维素纤维间相互作用的介质,从而降低纤维化过程中的能量消耗。模拟发现最合适的介质是含有0.007:0.012 wt.% NaOH:尿素的水溶液,并且在中试规模实验中确实发现,相对于仅用水的情况,这种介质平均可将纤维化能量降低约21%。NaOH:尿素介导形成的CNFs与在水中形成的CNFs具有相似的结晶度、形态和机械强度。NaOH和尿素在CNFs上协同作用以辅助纤维化,但作用于不同的长度尺度。NaOH使羟基去质子化,导致原纤之间产生中尺度静电排斥,而尿素与质子化的羟基形成氢键,从而破坏原纤间的氢键。这表明了一种通用机制,即在需要对可去质子化聚合物进行分散处理的材料加工过程中,可以有效地采用含有强碱和充当氢键受体和/或供体的小分子的水相介质。该研究展示了如何将原子细节的计算机模拟与中试规模实验相结合,用于循环生物经济材料加工过程的合理设计。