Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France.
Fundación Instituto Leloir, IIBBA, CONICET, Buenos Aires 1405, Argentina.
DNA Repair (Amst). 2024 Oct;142:103758. doi: 10.1016/j.dnarep.2024.103758. Epub 2024 Aug 30.
Timely and accurate DNA replication is critical for safeguarding genome integrity and ensuring cell viability. Yet, this process is challenged by DNA damage blocking the progression of the replication machinery. To counteract replication fork stalling, evolutionary conserved DNA damage tolerance (DDT) mechanisms promote DNA damage bypass and fork movement. One of these mechanisms involves "skipping" DNA damage through repriming downstream of the lesion, leaving single-stranded DNA (ssDNA) gaps behind the advancing forks (also known as post-replicative gaps). In vertebrates, repriming in damaged leading templates is proposed to be mainly promoted by the primase and polymerase PRIMPOL. In this review, we discuss recent advances towards our understanding of the physiological and pathological conditions leading to repriming activation in human models, revealing a regulatory network of PRIMPOL activity. Upon repriming by PRIMPOL, post-replicative gaps formed can be filled-in by the DDT mechanisms translesion synthesis and template switching. We discuss novel findings on how these mechanisms are regulated and coordinated in time to promote gap filling. Finally, we discuss how defective gap filling and aberrant gap expansion by nucleases underlie the cytotoxicity associated with post-replicative gap accumulation. Our increasing knowledge of this repriming mechanism - from gap formation to gap filling - is revealing that targeting the last step of this pathway is a promising approach to exploit post-replicative gaps in anti-cancer therapeutic strategies.
及时准确的 DNA 复制对于保护基因组完整性和确保细胞活力至关重要。然而,这个过程受到阻碍,因为 DNA 损伤会阻止复制机器的前进。为了克服复制叉停滞,进化保守的 DNA 损伤容忍(DDT)机制促进 DNA 损伤绕过和叉移动。这些机制之一涉及通过在损伤下游重新引发来“跳过”DNA 损伤,在前进的叉后面留下单链 DNA(ssDNA)缺口(也称为复制后缺口)。在脊椎动物中,受损先导模板中的重新引发主要由引物酶和聚合酶 PRIMPOL 促进。在这篇综述中,我们讨论了最近在理解导致人类模型中重新引发激活的生理和病理条件方面的进展,揭示了 PRIMPOL 活性的调控网络。通过 PRIMPOL 重新引发后,形成的复制后缺口可以通过 DDT 机制跨损伤合成和模板切换来填补。我们讨论了关于这些机制如何在时间上进行调节和协调以促进缺口填充的新发现。最后,我们讨论了核酶如何通过缺陷的缺口填充和异常的缺口扩展导致与复制后缺口积累相关的细胞毒性。我们对这种重新引发机制的了解不断增加——从缺口形成到缺口填充——揭示了靶向该途径的最后一步是利用复制后缺口在抗癌治疗策略中的一种很有前途的方法。