酶的混杂性和地下反应解释了大肠杆菌能够将非天然化学合成物 2,4-二羟基丁酸用作生长的碳源的原因。
Enzymatic promiscuity and underground reactions accounted for the capability of Escherichia coli to use the non-natural chemical synthon 2,4-dihydroxybutyric acid as a carbon source for growth.
机构信息
Toulouse Biotechnology Institute, UMR INSA -CNRS5504 and UMR INSA-INRAE 792, 135 avenue de Rangueil, Toulouse 31077, France.
Toulouse Biotechnology Institute, UMR INSA -CNRS5504 and UMR INSA-INRAE 792, 135 avenue de Rangueil, Toulouse 31077, France; Toulouse White Biotechnology, UMS INRAE-INSA-CNRS, 135 Avenue de Rangueil, Toulouse 31077, France.
出版信息
Microbiol Res. 2024 Nov;288:127888. doi: 10.1016/j.micres.2024.127888. Epub 2024 Aug 31.
2,4-dihydroxybutyric acid (DHB) and 2-keto-4-hydroxybutyrate (OHB) are non-natural molecules obtained through synthetic pathways from renewable carbon source. As they are structurally similar to lactate and pyruvate respectively, they could possibly interfere with the metabolic network of Escherichia coli. In fact, we showed that DHB can be easily oxidized by the membrane associated L and D-lactate dehydrogenases encoded by lldD, dld and ykgF into OHB, and the latter being cleaved into pyruvate and formaldehyde by several pyruvate-dependent aldolases, with YagE being the most effective. While formaldehyde was readily detoxified into formate, Escherichia coli K12 MG1655 strain failed to grow on DHB despite of the production of pyruvate. To find out the reason for this failure, we constructed a mutant strain whose growth was rendered dependent on DHB and subjected this strain to adaptive evolution. Genome sequencing of the adapted strain revealed an essential role for ygbI encoding a transcriptional repressor of the threonate operon in this DHB-dependent growth. This critical function was attributed to the derepression of ygbN encoding a putative threonate transporter, which was found to exclusively transport the D form of DHB. A subsequent laboratory evolution was carried out with E. coli K12 MG1655 deleted for ΔygbI to adapt for growth on DHB as sole carbon source. Remarkably, only two additional mutations were disclosed in the adapted strain, which were demonstrated by reverse engineering to be necessary and sufficient for robust growth on DHB. One mutation was in nanR encoding the transcription repressor of sialic acid metabolic genes, causing 140-fold increase in expression of nanA encoding N-acetyl neuraminic acid lyase, a pyruvate-dependent aldolase, and the other was in the promoter of dld leading to 14-fold increase in D-lactate dehydrogenase activity on DHB. Taken together, this work illustrates the importance of promiscuous enzymes in underground metabolism and moreover, in the frame of synthetic pathways aiming at producing non-natural products, these underground reactions could potentially penalize yield and title of these bio-based products.
2,4-二羟基丁酸(DHB)和 2-酮基-4-羟基丁酸(OHB)是通过可再生碳源的合成途径获得的非天然分子。由于它们分别与乳酸盐和丙酮酸盐在结构上相似,因此它们可能会干扰大肠杆菌的代谢网络。事实上,我们表明 DHB 可以被膜结合的 L 和 D-乳酸脱氢酶 LldD、Dld 和 YkgF 容易地氧化成 OHB,后者被几种依赖于丙酮酸的醛缩酶裂解成丙酮酸和甲醛,其中 YagE 是最有效的。虽然甲醛很容易被解毒成甲酸盐,但大肠杆菌 K12 MG1655 菌株尽管能产生丙酮酸,但不能在 DHB 上生长。为了找出这种失败的原因,我们构建了一个突变株,使其生长依赖于 DHB,并对该突变株进行了适应性进化。适应菌株的基因组测序揭示了编码 threonate 操纵子转录抑制剂的 ygbI 在这种 DHB 依赖生长中的重要作用。这个关键功能归因于 ygbN 的去阻遏,ygbN 编码一种假定的 threonate 转运蛋白,该蛋白被发现专门转运 DHB 的 D 形式。随后进行了大肠杆菌 K12 MG1655 的实验室进化,该突变株缺失了ΔygbI,以适应作为唯一碳源的 DHB 生长。值得注意的是,适应菌株仅揭示了两个额外的突变,通过反向工程证明这两个突变对于在 DHB 上稳健生长是必要和充分的。一个突变是在编码唾液酸代谢基因转录抑制剂的 nanR 中,导致编码 N-乙酰神经氨酸裂解酶的 nanA 的表达增加 140 倍,N-乙酰神经氨酸裂解酶是一种依赖于丙酮酸的醛缩酶,另一个突变是在 dld 的启动子中,导致 DHB 上 D-乳酸脱氢酶活性增加 14 倍。总之,这项工作说明了在地下代谢中混杂酶的重要性,此外,在旨在生产非天然产物的合成途径中,这些地下反应可能会对这些生物基产品的产量和标题产生潜在的影响。