Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
BMC Microbiol. 2011 Apr 11;11:70. doi: 10.1186/1471-2180-11-70.
Gene expression is regulated through a complex interplay of different transcription factors (TFs) which can enhance or inhibit gene transcription. ArcA is a global regulator that regulates genes involved in different metabolic pathways, while IclR as a local regulator, controls the transcription of the glyoxylate pathway genes of the aceBAK operon. This study investigates the physiological and metabolic consequences of arcA and iclR deletions on E. coli K12 MG1655 under glucose abundant and limiting conditions and compares the results with the metabolic characteristics of E. coli BL21 (DE3).
The deletion of arcA and iclR results in an increase in the biomass yield both under glucose abundant and limiting conditions, approaching the maximum theoretical yield of 0.65 c-mole/c-mole glucose under glucose abundant conditions. This can be explained by the lower flux through several CO2 producing pathways in the E. coli K12 ΔarcAΔiclR double knockout strain. Due to iclR gene deletion, the glyoxylate pathway is activated resulting in a redirection of 30% of the isocitrate molecules directly to succinate and malate without CO2 production. Furthermore, a higher flux at the entrance of the TCA was noticed due to arcA gene deletion, resulting in a reduced production of acetate and less carbon loss. Under glucose limiting conditions the flux through the glyoxylate pathway is further increased in the ΔiclR knockout strain, but this effect was not observed in the double knockout strain. Also a striking correlation between the glyoxylate flux data and the isocitrate lyase activity was observed for almost all strains and under both growth conditions, illustrating the transcriptional control of this pathway. Finally, similar central metabolic fluxes were observed in E. coli K12 ΔarcA ΔiclR compared to the industrially relevant E. coli BL21 (DE3), especially with respect to the pentose pathway, the glyoxylate pathway, and the TCA fluxes. In addition, a comparison of the genome sequences of the two strains showed that BL21 possesses two mutations in the promoter region of iclR and rare codons are present in arcA implying a lower tRNA acceptance. Both phenomena presumably result in a reduced ArcA and IclR synthesis in BL21, which contributes to the similar physiology as observed in E. coli K12 ΔarcAΔiclR.
The deletion of arcA results in a decrease of repression on transcription of TCA cycle genes under glucose abundant conditions, without significantly affecting the glyoxylate pathway activity. IclR clearly represses transcription of glyoxylate pathway genes under glucose abundance, a condition in which Crp activation is absent. Under glucose limitation, Crp is responsible for the high glyoxylate flux, but IclR still represses transcription. Finally, in E. coli BL21 (DE3), ArcA and IclR are poorly expressed, explaining the similar fluxes observed compared to the ΔarcAΔiclR strain.
基因表达是通过不同转录因子(TFs)的复杂相互作用来调节的,这些转录因子可以增强或抑制基因转录。ArcA 是一种全局调节剂,调节参与不同代谢途径的基因,而 IclR 作为局部调节剂,控制 aceBAK 操纵子的乙醛酸途径基因的转录。本研究在葡萄糖丰富和有限条件下研究了 arcA 和 iclR 缺失对大肠杆菌 K12 MG1655 的生理和代谢后果,并将结果与大肠杆菌 BL21(DE3)的代谢特征进行了比较。
arcA 和 iclR 的缺失导致在葡萄糖丰富和有限条件下生物量产量增加,在葡萄糖丰富条件下接近 0.65 c-mole/c-mole 葡萄糖的最大理论产量。这可以通过在大肠杆菌 K12 ΔarcAΔiclR 双缺失菌株中,通过几种 CO2 产生途径的通量降低来解释。由于 iclR 基因缺失,乙醛酸途径被激活,导致 30%的异柠檬酸分子直接转向琥珀酸和苹果酸,而不产生 CO2。此外,由于 arcA 基因缺失,在 TCA 的入口处注意到更高的通量,导致乙酸盐产量降低和更少的碳损失。在葡萄糖限制条件下,ΔiclR 缺失菌株中的乙醛酸途径通量进一步增加,但在双缺失菌株中未观察到这种效应。此外,几乎所有菌株在两种生长条件下,都观察到乙醛酸通量数据与异柠檬酸裂解酶活性之间存在显著相关性,说明了该途径的转录控制。最后,与工业上相关的大肠杆菌 BL21(DE3)相比,大肠杆菌 K12 ΔarcAΔiclR 中观察到相似的中心代谢通量,特别是在戊糖途径、乙醛酸途径和 TCA 通量方面。此外,对两种菌株的基因组序列进行比较表明,BL21 在 iclR 的启动子区域有两个突变,arcA 中存在稀有密码子,这意味着 tRNA 接受能力降低。这两种现象可能导致 BL21 中 ArcA 和 IclR 的合成减少,这有助于观察到与大肠杆菌 K12 ΔarcAΔiclR 相似的生理学。
ArcA 的缺失导致葡萄糖丰富条件下 TCA 循环基因转录的抑制减少,而对乙醛酸途径活性没有显著影响。IclR 在葡萄糖丰富时明显抑制乙醛酸途径基因的转录,此时不存在 Crp 激活。在葡萄糖限制下,Crp 负责高乙醛酸通量,但 IclR 仍抑制转录。最后,在大肠杆菌 BL21(DE3)中,ArcA 和 IclR 的表达水平较低,这解释了与 ΔarcAΔiclR 菌株相比观察到的相似通量。