Suppr超能文献

一种深层次分解模型,用于加速大型供水管网中的水力模拟。

A deep-level decomposed model to accelerate hydraulic simulations in large water distribution networks.

机构信息

College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.

College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.

出版信息

Water Res. 2024 Nov 15;266:122318. doi: 10.1016/j.watres.2024.122318. Epub 2024 Aug 26.

Abstract

As the size of water distribution network (WDN) models continues to grow, developing and applying real-time models or digital twins to simulate hydraulic behaviors in large-scale WDNs is becoming increasingly challenging. The long response time incurred when performing multiple hydraulic simulations in large-scale WDNs can no longer meet the current requirements for the efficient and real-time application of WDN models. To address this issue, there is a rising interest in accelerating hydraulic calculations in WDN models by integrating new model structures with abundant computational resources and mature parallel computing frameworks. This paper presents a novel and efficient framework for steady-state hydraulic calculations, comprising a joint topology-calculation decomposition method that decomposes the hydraulic calculation process and a high-performance decomposed gradient algorithm that integrates with parallel computation. Tests in four WDNs of different sizes with 8 to 85,118 nodes demonstrate that the framework maintains high calculation accuracy consistent with EPANET and can reduce calculation time by up to 51.93 % compared to EPANET in the largest WDN model. Further investigation found that factors affecting the acceleration include the decomposition level, consistency of sub-model sizes and sub-model structures. The framework aims to help develop rapid-responding models for large-scale WDNs and improve their efficiency in integrating multiple application algorithms, thereby supporting the water supply industry in achieving more adaptive and intelligent management of large-scale WDNs.

摘要

随着供水管网 (WDN) 模型的规模不断扩大,开发和应用实时模型或数字孪生来模拟大规模 WDN 的水力行为变得越来越具有挑战性。在大规模 WDN 中执行多次水力模拟时,较长的响应时间已经不能满足当前对 WDN 模型高效实时应用的要求。为了解决这个问题,人们越来越有兴趣通过将新的模型结构与丰富的计算资源和成熟的并行计算框架集成,来加速 WDN 模型中的水力计算。本文提出了一种用于稳态水力计算的新颖而高效的框架,包括一种联合拓扑计算分解方法,该方法分解了水力计算过程,以及一种高性能分解梯度算法,该算法与并行计算集成。在四个具有 8 到 85118 个节点的不同规模的 WDN 中的测试表明,该框架保持了与 EPANET 一致的高精度,并且在最大的 WDN 模型中可以将计算时间缩短多达 51.93%。进一步的研究发现,影响加速的因素包括分解水平、子模型大小和子模型结构的一致性。该框架旨在帮助开发用于大规模 WDN 的快速响应模型,并提高其集成多个应用算法的效率,从而支持供水行业实现对大规模 WDN 的更自适应和智能化管理。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验