Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, Salerno, Italy; Institute of Biomedical and Neural Engineering, Department of Engineering, Reykjavik University, Reykjavik, Iceland.
Department of Orthopaedics, Landspitali University Hospital, Reykjavik, Iceland.
Comput Methods Programs Biomed. 2024 Nov;256:108398. doi: 10.1016/j.cmpb.2024.108398. Epub 2024 Aug 28.
Tendon segmentation is crucial for studying tendon-related pathologies like tendinopathy, tendinosis, etc. This step further enables detailed analysis of specific tendon regions using automated or semi-automated methods. This study specifically aims at the segmentation of Achilles tendon, the largest tendon in the human body.
This study proposes a comprehensive end-to-end tendon segmentation module composed of a preliminary superpixel-based coarse segmentation preceding the final segmentation task. The final segmentation results are obtained through two distinct approaches. In the first approach, the coarsely generated superpixels are subjected to classification using Random Forest (RF) and Support Vector Machine (SVM) classifiers to classify whether each superpixel belongs to a tendon class or not (resulting in tendon segmentation). In the second approach, the arrangements of superpixels are converted to graphs instead of being treated as conventional image grids. This classification process uses a graph-based convolutional network (GCN) to determine whether each superpixel corresponds to a tendon class or not.
All experiments are conducted on a custom-made ankle MRI dataset. The dataset comprises 76 subjects and is divided into two sets: one for training (Dataset 1, trained and evaluated using leave-one-group-out cross-validation) and the other as unseen test data (Dataset 2). Using our first approach, the final test AUC (Area Under the ROC Curve) scores using RF and SVM classifiers on the test data (Dataset 2) are 0.992 and 0.987, respectively, with sensitivities of 0.904 and 0.966. On the other hand, using our second approach (GCN-based node classification), the AUC score for the test set is 0.933 with a sensitivity of 0.899.
Our proposed pipeline demonstrates the efficacy of employing superpixel generation as a coarse segmentation technique for the final tendon segmentation. Whether utilizing RF, SVM-based superpixel classification, or GCN-based classification for tendon segmentation, our system consistently achieves commendable AUC scores, especially the non-graph-based approach. Given the limited dataset, our graph-based method did not perform as well as non-graph-based superpixel classifications; however, the results obtained provide valuable insights into how well the models can distinguish between tendons and non-tendons. This opens up opportunities for further exploration and improvement.
肌腱分割对于研究肌腱相关疾病(如腱病、腱退变等)至关重要。这一步进一步使使用自动化或半自动方法对特定的肌腱区域进行详细分析成为可能。本研究特别针对人体最大的肌腱——跟腱进行分割。
本研究提出了一种全面的端到端肌腱分割模块,该模块由初步的基于超像素的粗分割组成,然后是最终的分割任务。最终的分割结果是通过两种不同的方法获得的。在第一种方法中,粗分割生成的超像素使用随机森林(RF)和支持向量机(SVM)分类器进行分类,以确定每个超像素是否属于肌腱类别(从而实现肌腱分割)。在第二种方法中,超像素的排列被转换为图,而不是被视为常规的图像网格。这个分类过程使用图卷积网络(GCN)来确定每个超像素是否属于肌腱类别。
所有实验均在一个定制的踝关节 MRI 数据集上进行。该数据集包含 76 名受试者,分为两组:一组用于训练(数据集 1,使用留一分组交叉验证进行训练和评估),另一组作为未见过的测试数据(数据集 2)。使用我们的第一种方法,在测试数据(数据集 2)上使用 RF 和 SVM 分类器的最终测试 AUC(ROC 曲线下面积)分数分别为 0.992 和 0.987,灵敏度分别为 0.904 和 0.966。另一方面,使用我们的第二种方法(基于 GCN 的节点分类),测试集的 AUC 分数为 0.933,灵敏度为 0.899。
我们提出的流水线证明了使用超像素生成作为最终肌腱分割的粗分割技术的有效性。无论是使用 RF、SVM 为基础的超像素分类,还是基于 GCN 的分类进行肌腱分割,我们的系统始终获得令人赞赏的 AUC 分数,特别是非图为基础的方法。考虑到数据集有限,我们的基于图的方法的性能不如非图为基础的超像素分类;然而,得到的结果提供了有关模型在区分肌腱和非肌腱方面的性能的有价值的见解。这为进一步的探索和改进提供了机会。