Suppr超能文献

基于深度卷积神经网络和机器学习分类器的脑 MRI 肿瘤分割与分类的混合方法。

A Hybrid Approach Based on Deep CNN and Machine Learning Classifiers for the Tumor Segmentation and Classification in Brain MRI.

机构信息

Guangdong Key Laboratory of Intelligent Information Processing, School of Electronics and Information Engineering, Shenzhen University, China.

School of Computer and Information Engineering, Xiamen University of Technology, China.

出版信息

Comput Math Methods Med. 2022 Aug 5;2022:6446680. doi: 10.1155/2022/6446680. eCollection 2022.

Abstract

Conventional medical imaging and machine learning techniques are not perfect enough to correctly segment the brain tumor in MRI as the proper identification and segmentation of tumor borders are one of the most important criteria of tumor extraction. The existing approaches are time-consuming, incursive, and susceptible to human mistake. These drawbacks highlight the importance of developing a completely automated deep learning-based approach for segmentation and classification of brain tumors. The expedient and prompt segmentation and classification of a brain tumor are critical for accurate clinical diagnosis and adequately treatment. As a result, deep learning-based brain tumor segmentation and classification algorithms are extensively employed. In the deep learning-based brain tumor segmentation and classification technique, the CNN model has an excellent brain segmentation and classification effect. In this work, an integrated and hybrid approach based on deep convolutional neural network and machine learning classifiers is proposed for the accurate segmentation and classification of brain MRI tumor. A CNN is proposed in the first stage to learn the feature map from image space of brain MRI into the tumor marker region. In the second step, a faster region-based CNN is developed for the localization of tumor region followed by region proposal network (RPN). In the last step, a deep convolutional neural network and machine learning classifiers are incorporated in series in order to further refine the segmentation and classification process to obtain more accurate results and findings. The proposed model's performance is assessed based on evaluation metrics extensively used in medical image processing. The experimental results validate that the proposed deep CNN and SVM-RBF classifier achieved an accuracy of 98.3% and a dice similarity coefficient (DSC) of 97.8% on the task of classifying brain tumors as gliomas, meningioma, or pituitary using brain dataset-1, while on Figshare dataset, it achieved an accuracy of 98.0% and a DSC of 97.1% on classifying brain tumors as gliomas, meningioma, or pituitary. The segmentation and classification results demonstrate that the proposed model outperforms state-of-the-art techniques by a significant margin.

摘要

传统的医学成像和机器学习技术还不够完善,无法正确分割磁共振成像中的脑瘤,因为正确识别和分割肿瘤边界是肿瘤提取的最重要标准之一。现有的方法既耗时又具有侵入性,并且容易出现人为错误。这些缺点突出了开发完全基于深度学习的脑肿瘤分割和分类方法的重要性。及时、迅速地对脑瘤进行分割和分类对于准确的临床诊断和充分的治疗至关重要。因此,广泛采用了基于深度学习的脑肿瘤分割和分类算法。在基于深度学习的脑肿瘤分割和分类技术中,CNN 模型具有出色的脑分割和分类效果。在这项工作中,提出了一种基于深度卷积神经网络和机器学习分类器的集成和混合方法,用于准确分割和分类脑 MRI 肿瘤。在第一阶段,提出了一个 CNN 从脑 MRI 的图像空间学习特征图到肿瘤标记区域。在第二步中,开发了一个更快的基于区域的 CNN 来定位肿瘤区域,然后是区域提议网络(RPN)。在最后一步,深度卷积神经网络和机器学习分类器串联在一起,以进一步细化分割和分类过程,从而获得更准确的结果和发现。所提出模型的性能基于广泛用于医学图像处理的评估指标进行评估。实验结果验证了所提出的深度 CNN 和 SVM-RBF 分类器在使用脑数据集-1对脑肿瘤进行分类为胶质瘤、脑膜瘤或垂体瘤的任务中达到了 98.3%的准确率和 97.8%的骰子相似系数(DSC),而在 Figshare 数据集上,对脑肿瘤进行分类为胶质瘤、脑膜瘤或垂体瘤的任务中达到了 98.0%的准确率和 97.1%的 DSC。分割和分类结果表明,所提出的模型比最先进的技术有显著的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/685c/9400402/489679ad89e2/CMMM2022-6446680.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验