Escobar-Montaño Felipe, Gómez-Oliva Ricardo, Ezzanad Abdellah, Vázquez de Górgolas Sonia, Zorrilla David, Macías-Sánchez Antonio J, Botubol-Ares José M, Nunez-Abades Pedro, Castro Carmen, Durán-Patrón Rosa, Hernández-Galán Rosario
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real Cádiz, Spain.
Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain.
Bioorg Chem. 2024 Dec;153:107769. doi: 10.1016/j.bioorg.2024.107769. Epub 2024 Aug 30.
Promoting endogenous neurogenesis for brain repair is emerging as a promising strategy to mitigate the functional impairments associated with various neurological disorders characterized by neuronal death. Diterpenes featuring tigliane, ingenane, jatrophane and lathyrane skeletons, frequently found in Euphorbia plant species, are known protein kinase C (PKC) activators and exhibit a wide variety of pharmacological properties, including the stimulation of neurogenesis. Microbial transformation of these diterpenes represents a green and sustainable methodology that offers a hitherto little explored approach to obtaining novel derivatives and exploring structure-activity relationships. In the present study, we report the biotransformation of euphoboetirane A (4) and epoxyboetirane A (5), two lathyrane diterpenoids isolated from Euphorbia boetica, by Mucor circinelloides MC NRRL3631. Our findings revealed the production of nine biotransformation products (6-14), including jatrophane derivatives originated through an unprecedented rearrangement from the parent lathyranes. The chemical structures and absolute configurations of the new compounds were elucidated through comprehensive analysis using NMR and ECD spectroscopy, as well as MS. The study evaluated how principal metabolites and their derivatives affect TGFα and NRG1 release, as well as their potential to promote proliferation or differentiation in cultures of NSC isolated from the SVZ of adult mice. In order to shed some light on the mechanisms underlying the ability of 12 as a neurogenic compound, the interactions of selected compounds with PKC δ-C1B were analyzed through molecular docking and molecular dynamics. Based on these, it clearly appears that the ability of compound 12 to form both acceptor and donor hydrogen bonds with certain amino acid residues in the enzyme pocket leads to a higher affinity compound-PKC complex, which correlates with the observed biological activity.
促进内源性神经发生以修复大脑正成为一种有前景的策略,可减轻与以神经元死亡为特征的各种神经系统疾病相关的功能障碍。大戟属植物中常见的具有瑞香烷、千金二萜烷、麻风树烷和拉替烷骨架的二萜类化合物是已知的蛋白激酶C(PKC)激活剂,并具有多种药理特性,包括刺激神经发生。这些二萜类化合物的微生物转化是一种绿色且可持续的方法,为获得新型衍生物和探索构效关系提供了一种迄今鲜少探索的途径。在本研究中,我们报道了由卷枝毛霉MC NRRL3631对从博蒂卡大戟中分离得到的两种拉替烷二萜类化合物——大戟贝特拉烷A(4)和环氧贝特拉烷A(5)进行的生物转化。我们的研究结果揭示了九种生物转化产物(6 - 14)的产生,包括通过前所未有的重排从母体拉替烷衍生而来的麻风树烷衍生物。通过使用核磁共振(NMR)、电子圆二色光谱(ECD)以及质谱(MS)的综合分析阐明了新化合物的化学结构和绝对构型。该研究评估了主要代谢产物及其衍生物如何影响转化生长因子α(TGFα)和神经调节蛋白1(NRG1)的释放,以及它们在从成年小鼠侧脑室下区(SVZ)分离的神经干细胞(NSC)培养物中促进增殖或分化的潜力。为了深入了解化合物12作为神经发生化合物的作用机制,通过分子对接和分子动力学分析了所选化合物与PKC δ - C1B的相互作用。基于这些,很明显化合物12与酶口袋中某些氨基酸残基形成受体和供体氢键的能力导致了更高亲和力的化合物 - PKC复合物,这与观察到的生物活性相关。