Suppr超能文献

全膝关节置换术后输血风险的预测:使用机器学习算法

Prediction of transfusion risk after total knee arthroplasty: use of a machine learning algorithm.

作者信息

Faure Nicolas, Knecht Siam, Tran Pierre, Tamine Lyna, Orban Jean-Christophe, Bronsard Nicolas, Gonzalez Jean-François, Micicoi Grégoire

机构信息

University Institute of Locomotor and Sport (IULS), Pasteur 2 Hospital, Nice, 30 Voie Romaine, 06000 Nice, France.

Aix-Marseille Univ, CNRS, EFS, ADES, 13007 Marseille, France.

出版信息

Orthop Traumatol Surg Res. 2025 Feb;111(1):103985. doi: 10.1016/j.otsr.2024.103985. Epub 2024 Sep 3.

Abstract

INTRODUCTION

Total knee arthroplasty (TKA) carries a significant hemorrhagic risk, with a non-negligible rate of postoperative transfusions. The blood-sparing strategy has evolved to reduce blood loss after TKA by identifying the patient's risk factors preoperatively. In practice, a blood count is often performed postoperatively but rarely altering the patient's subsequent management. This study aimed to identify the preoperative variables associated with hemorrhagic risk, enabling the creation of a machine-learning model predictive of transfusion risk after total knee arthroplasty and the need for a complete blood count.

HYPOTHESIS

Based on preoperative data, a powerful machine learning predictive model can be constructed to estimate the risk of transfusion after total knee arthroplasty.

MATERIAL AND METHODS

This retrospective single-centre study included 774 total knee arthroplasties (TKA) operated between January 2020 and March 2023. Twenty-five preoperative variables were integrated into the machine learning model and filtered by a recursive feature elimination algorithm. The most predictive variables were selected and used to construct a gradient-boosting machine algorithm to define the overall postoperative transfusion risk model. Two groups were formed of patients transfused and not transfused after TKA. Odds ratios were determined, and the area under the curve evaluated the model's performance.

RESULTS

Of the 774 TKA surgery patients, 100 were transfused postoperatively (12.9%). The machine learning predictive model included five variables: age, body mass index, tranexamic acid administration, preoperative hemoglobin level, and platelet count. The overall performance was good with an area under the curve of 0.97 [95% CI 0.921-1], sensitivity of 94.4% [95% CI 91.2-97.6], and specificity of 85.4% [95% CI 80.6-90.2]. The tool developed to assess the risk of blood transfusion after TKA is available at https://arthrorisk.com.

CONCLUSION

The risk of postoperative transfusion after total knee arthroplasty can be predicted by a model that identifies patients at low, moderate, or high risk based on five preoperative variables. This machine learning tool is available on a web platform that is accessible to all, easy to use, and has a high prediction performance. The model aims to limit the need for routine check-ups, depending on the risk presented by the patient.

LEVEL OF EVIDENCE

II; diagnostic study.

摘要

引言

全膝关节置换术(TKA)存在显著的出血风险,术后输血率不可忽视。为减少TKA术后失血,血液保护策略不断发展,通过术前识别患者的风险因素来实现。在实际操作中,术后常进行血常规检查,但很少改变患者后续的治疗管理。本研究旨在确定与出血风险相关的术前变量,从而创建一个机器学习模型,预测全膝关节置换术后的输血风险以及是否需要进行血常规检查。

假设

基于术前数据,可以构建一个强大的机器学习预测模型,以估计全膝关节置换术后的输血风险。

材料与方法

这项回顾性单中心研究纳入了2020年1月至2023年3月期间进行的774例全膝关节置换术(TKA)。将25个术前变量纳入机器学习模型,并通过递归特征消除算法进行筛选。选择最具预测性的变量,用于构建梯度提升机算法,以定义术后总体输血风险模型。TKA术后输血和未输血的患者分为两组。确定比值比,并通过曲线下面积评估模型的性能。

结果

在774例TKA手术患者中,100例术后接受了输血(12.9%)。机器学习预测模型包括五个变量:年龄、体重指数、氨甲环酸的使用、术前血红蛋白水平和血小板计数。总体表现良好,曲线下面积为=0.97[95%可信区间0.921-1],灵敏度为94.4%[95%可信区间91.2-97.6],特异性为85.4%[95%可信区间80.6-90.2]。用于评估TKA术后输血风险的工具可在https://arthrorisk.com获取。

结论

全膝关节置换术后的输血风险可以通过一个基于五个术前变量识别低、中、高风险患者的模型来预测。这个机器学习工具可在一个所有人都能访问的网络平台上使用,易于操作,且具有较高的预测性能。该模型旨在根据患者呈现的风险,限制常规检查的必要性。

证据水平

II;诊断性研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验