Suppr超能文献

flDPnn2:一种准确快速预测蛋白质内无序的方法。

flDPnn2: Accurate and Fast Predictor of Intrinsic Disorder in Proteins.

机构信息

NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China.

Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.

出版信息

J Mol Biol. 2024 Sep 1;436(17):168605. doi: 10.1016/j.jmb.2024.168605. Epub 2024 May 8.

Abstract

Prediction of the intrinsic disorder in protein sequences is an active research area, with well over 100 predictors that were released to date. These efforts are motivated by the functional importance and high levels of abundance of intrinsic disorder, combined with relatively low amounts of experimental annotations. The disorder predictors are periodically evaluated by independent assessors in the Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiments. The recently completed CAID2 experiment assessed close to 40 state-of-the-art methods demonstrating that some of them produce accurate results. In particular, flDPnn2 method, which is the successor of flDPnn that performed well in the CAID1 experiment, secured the overall most accurate results on the Disorder-NOX dataset in CAID2. flDPnn2 implements a number of improvements when compared to its predecessor including changes to the inputs, increased size of the deep network model that we retrained on a larger training set, and addition of an alignment module. Using results from CAID2, we show that flDPnn2 produces accurate predictions very quickly, modestly improving over the accuracy of flDPnn and reducing the runtime by half, to about 27 s per protein. flDPnn2 is freely available as a convenient web server at http://biomine.cs.vcu.edu/servers/flDPnn2/.

摘要

蛋白质序列固有无序性的预测是一个活跃的研究领域,迄今为止已经发布了超过 100 种预测器。这些努力的动力来自固有无序性的功能重要性和高度丰富性,以及相对较少的实验注释。无序性预测器定期由独立评估员在蛋白质固有无序性预测的关键评估 (CAID) 实验中进行评估。最近完成的 CAID2 实验评估了近 40 种最先进的方法,表明其中一些方法产生了准确的结果。特别是 flDPnn2 方法,它是在 CAID1 实验中表现出色的 flDPnn 的后继者,在 CAID2 的 Disorder-NOX 数据集上获得了整体最准确的结果。flDPnn2 与前身相比实施了许多改进,包括输入的更改、我们在更大的训练集上重新训练的深度网络模型的大小增加,以及对齐模块的添加。使用 CAID2 的结果,我们表明 flDPnn2 可以非常快速地生成准确的预测,在 flDPnn 的准确性上略有提高,同时将运行时间缩短一半,约为每个蛋白质 27 秒。flDPnn2 作为一个方便的网络服务器,免费提供在 http://biomine.cs.vcu.edu/servers/flDPnn2/。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验