Suppr超能文献

解析非 HIV 隐球菌性脑膜炎的预后指标:构建和验证预测列线图模型。

Deciphering prognostic indicators in non-HIV cryptococcal meningitis: Constructing and validating a predictive Nomogram model.

机构信息

Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Shanxi Medical University, Taiyuan, Shanxi 030001, China.

出版信息

Med Mycol. 2024 Sep 6;62(9). doi: 10.1093/mmy/myae092.

Abstract

Cryptococcal meningitis (CM) is a well-recognized fungal infection, with substantial mortality in individuals infected with the human immunodeficiency virus (HIV). However, the incidence, risk factors, and outcomes in non-HIV adults remain poorly understood. This study aims to investigate the characteristics and prognostic indicators of CM in non-HIV adult patients, integrating a novel predictive model to guide clinical decision-making. A retrospective cohort of 64 non-HIV adult CM patients, including 51 patients from previous studies and 13 from the First Hospital of Shanxi Medical University, was analyzed. We assessed demographic features, underlying diseases, intracranial pressure, cerebrospinal fluid characteristics, and brain imaging. Using the least absolute shrinkage and selection operator (LASSO) method, and multivariate logistic regression, we identified significant variables and constructed a Nomogram prediction model. The model's calibration, discrimination, and clinical value were evaluated using the Bootstrap method, calibration curve, C index, goodness-of-fit test, receiver operating characteristic (ROC) analysis, and decision curve analysis. Age, brain imaging showing parenchymal involvement, meningeal and ventricular involvement, and previous use of immunosuppressive agents were identified as significant variables. The Nomogram prediction model displayed satisfactory performance with an akaike information criterion (AIC) value of 72.326, C index of 0.723 (0.592-0.854), and area under the curve (AUC) of 0.723, goodness-of-fit test P = 0.995. This study summarizes the clinical and imaging features of adult non-HIV CM and introduces a tailored Nomogram prediction model to aid in patient management. The identification of predictive factors and the development of the nomogram enhance our understanding and capacity to treat this patient population. The insights derived have potential clinical implications, contributing to personalized care and improved patient outcomes.

摘要

隐球菌性脑膜炎(CM)是一种公认的真菌感染,在感染人类免疫缺陷病毒(HIV)的个体中死亡率很高。然而,非 HIV 成人的发病率、危险因素和结局仍知之甚少。本研究旨在探讨非 HIV 成人 CM 患者的特征和预后指标,并整合一种新的预测模型以指导临床决策。分析了 64 例非 HIV 成人 CM 患者的回顾性队列,包括之前研究的 51 例患者和山西医科大学第一医院的 13 例患者。我们评估了人口统计学特征、基础疾病、颅内压、脑脊液特征和脑成像。使用最小绝对收缩和选择算子(LASSO)方法和多变量逻辑回归,我们确定了显著变量并构建了列线图预测模型。使用 Bootstrap 方法、校准曲线、C 指数、拟合优度检验、接受者操作特征(ROC)分析和决策曲线分析评估模型的校准、区分和临床价值。年龄、显示实质受累、脑膜和脑室受累以及先前使用免疫抑制剂的脑成像被确定为显著变量。列线图预测模型的表现令人满意,Akaike 信息准则(AIC)值为 72.326,C 指数为 0.723(0.592-0.854),曲线下面积(AUC)为 0.723,拟合优度检验 P = 0.995。本研究总结了成人非 HIV CM 的临床和影像学特征,并引入了一种定制的列线图预测模型来辅助患者管理。预测因素的确定和列线图的开发增强了我们对这一患者群体的理解和治疗能力。得出的见解具有潜在的临床意义,有助于实现个性化护理和改善患者结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验