Cai Yanguang, Guo Changle, Chen Xiang
School of Automation, Guangdong University of Technology, Guangzhou, 511400, China.
School of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou, 510540, China.
Sci Rep. 2024 Sep 5;14(1):20690. doi: 10.1038/s41598-024-71581-2.
The sand cat swarm optimization (SCSO) is a recently proposed meta-heuristic algorithm. It inspires hunting behavior with sand cats based on hearing ability. However, in the later stage of SCSO, it is easy to fall into local optimality and cannot find a better position. In order to improve the search ability of SCSO and avoid falling into local optimal, an improved algorithm is proposed - Improved sand cat swarm optimization based on lens opposition-based learning and sparrow search algorithm (LSSCSO). A dynamic spiral search is introduced in the exploitation stage to make the algorithm search for better positions in the search space and improve the convergence accuracy of the algorithm. The lens opposition-based learning and the sparrow search algorithm are introduced in the later stages of the algorithm to make the algorithm jump out of the local optimum and improve the global search capability of the algorithm. To verify the effectiveness of LSSCSO in solving global optimization problems, CEC2005 and CEC2022 test functions are used to test the optimization performance of LSSCSO in different dimensions. The data results, convergence curve and Wilcoxon rank sum test are analyzed, and the results show that it has a strong optimization ability and can reach the optimal in most cases. Finally, LSSCSO is used to verify the effectiveness of the algorithm in solving engineering optimization problems.
沙猫群优化算法(SCSO)是一种最近提出的元启发式算法。它基于沙猫的听觉能力启发其狩猎行为。然而,在SCSO的后期,它很容易陷入局部最优,无法找到更好的位置。为了提高SCSO的搜索能力并避免陷入局部最优,提出了一种改进算法——基于透镜反对学习和麻雀搜索算法的改进沙猫群优化算法(LSSCSO)。在开发阶段引入动态螺旋搜索,使算法在搜索空间中寻找更好的位置,提高算法的收敛精度。在算法后期引入透镜反对学习和麻雀搜索算法,使算法跳出局部最优,提高算法的全局搜索能力。为了验证LSSCSO在解决全局优化问题方面的有效性,使用CEC2005和CEC2022测试函数来测试LSSCSO在不同维度上的优化性能。对数据结果、收敛曲线和威尔科克森秩和检验进行了分析,结果表明它具有很强的优化能力,在大多数情况下都能达到最优。最后,使用LSSCSO来验证该算法在解决工程优化问题方面的有效性。