Suppr超能文献

一种用于工程设计优化问题的具有多种策略的改进型南美浣熊优化算法。

An improved Coati Optimization Algorithm with multiple strategies for engineering design optimization problems.

作者信息

Qi Zhang, Yingjie Dong, Shan Ye, Xu Li, Dongcheng He, Guoqi Xiang

机构信息

Chengdu Technological University, Chengdu, 611730, China.

Panzhihua University, Panzhihua, 617000, China.

出版信息

Sci Rep. 2024 Sep 3;14(1):20435. doi: 10.1038/s41598-024-70575-4.

Abstract

Aiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value, resulting in slow convergence and lack of exploration ability; In this paper, an improved COA algorithm based on chaotic sequence, nonlinear inertia weight, adaptive T-distribution variation strategy and alert updating strategy is proposed to enhance the performance of COA (shorted as TNTWCOA). The algorithm introduces chaotic sequence mechanism to initialize the position. The position distribution of the initial solution is more uniform, the high quality initial solution is generated, the population richness is increased, and the problem of poor quality and uneven initial solution of the Coati Optimization Algorithm is solved. In exploration phase, the nonlinear inertial weight factor is introduced to coordinate the local optimization ability and global search ability of the algorithm. In the exploitation phase, adaptive T-distribution variation is introduced to increase the diversity of individual population under low fitness value and improve the ability of the algorithm to jump out of the local optimal value. At the same time, the alert update mechanism is proposed to improve the alert ability of COA algorithm, so that it can search within the optional range. When Coati is aware of the danger, Coati on the edge of the population will quickly move to the safe area to obtain a better position, while Coati in the middle of the population will randomly move to get closer to other Coatis. IEEE CEC2017 with 29 classic test functions were used to evaluate the convergence speed, convergence accuracy and other indicators of TNTWCOA algorithm. Meanwhile, TNTWCOA was used to verify 4 engineering design optimization problems, such as pressure vessel optimization design and welding beam design. The results of IEEE CEC2017 and engineering design Optimization problems are compared with Improved Coati Optimization Algorithm (ICOA), Coati Optimization Algorithm (COA), Golden Jackal Optimization Algorithm (GJO), Osprey Optimization Algorithm (OOA), Sand Cat Swarm Optimization Algorithm (SCSO), Subtraction-Average-Based Optimizer (SABO). The experimental results show that the improved TNTWCOA algorithm significantly improves the convergence speed and optimization accuracy, and has good robustness. Three‑bar truss design problem, The Gear Train Design Problem, Speed reducer design problem shows a strong solution advantage. The superior optimization ability and engineering practicability of TNTWCOA algorithm are verified.

摘要

针对人工浣熊优化算法在后期优化搜索阶段能力不足、种群多样性丧失、易陷入局部极值导致收敛速度慢且缺乏探索能力等问题,本文提出一种基于混沌序列、非线性惯性权重、自适应T分布变异策略和警戒更新策略的改进浣熊优化算法以提升浣熊优化算法(简称为TNTWCOA)的性能。该算法引入混沌序列机制初始化位置,使初始解的位置分布更均匀,生成高质量初始解,增加种群丰富度,解决了浣熊优化算法初始解质量差且不均匀的问题。在探索阶段,引入非线性惯性权重因子协调算法的局部优化能力和全局搜索能力。在开发阶段,引入自适应T分布变异,在低适应度值下增加个体种群多样性,提高算法跳出局部最优值的能力。同时,提出警戒更新机制提高浣熊优化算法的警戒能力,使其能在可选范围内搜索。当浣熊感知到危险时,种群边缘的浣熊会迅速移动到安全区域以获得更好位置,而种群中间的浣熊会随机移动以靠近其他浣熊。使用具有29个经典测试函数的IEEE CEC2017来评估TNTWCOA算法的收敛速度、收敛精度等指标。同时,用TNTWCOA验证了4个工程设计优化问题,如压力容器优化设计和焊接梁设计。将IEEE CEC2017和工程设计优化问题的结果与改进浣熊优化算法(ICOA)、浣熊优化算法(COA)金豺优化算法(GJO)、鹗优化算法(OOA)、沙猫群优化算法(SCSO)、基于减法平均的优化器(SABO)进行比较。实验结果表明,改进的TNTWCOA算法显著提高了收敛速度和优化精度,具有良好的鲁棒性。在三杆桁架设计问题、齿轮系设计问题、减速器设计问题上表现出强大的求解优势。验证了TNTWCOA算法优越的优化能力和工程实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53dc/11372136/54b44886f291/41598_2024_70575_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验