Suppr超能文献

用于惯性约束聚变的光学复用中子飞行时间技术

Optically multiplexed neutron time-of-flight technique for inertial confinement fusion.

作者信息

Tafoya L, Wilde C, Cata B, Freeman M, Geppert-Kleinrath V, Ivancic S, Katz J, McBride R, Sorce A, Stanley B, Danly C

机构信息

University of Michigan, Ann Arbor, Michigan 48109, USA.

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

出版信息

Rev Sci Instrum. 2024 Sep 1;95(9). doi: 10.1063/5.0219572.

Abstract

Neutron time-of-flight (nTOF) detectors are crucial in diagnosing the performance of inertial confinement fusion (ICF) experiments, which implode targets of deuterium-tritium fuel to achieve thermonuclear conditions. These detectors utilize the fusion neutron energy spectrum to extract key measurements, including the hotspot ion temperature and fuel areal density. Previous work [Danly et al., Rev. Sci. Instrum. 94, 043502 (2023)] has demonstrated adding 1D spatial resolution to an nTOF-like detector using a neutron aperture and streak camera to measure the ion temperature profile of an ICF implosion. By contrast, the study presented herein explores modifying the 1D detector to use a fast photomultiplier tube (PMT) to validate the design of a 2D spatially resolved instrument based on reconstruction from 1D profiles. The modification would collect time-of-flight traces from separate scintillators in an imaging array with one PMT using optical fibers of varying lengths to time-multiplex the signals. This technique has been demonstrated in ride-along experiments on the OMEGA laser with 20 fiber-coupled scintillator channels connected to a Photek PMT210. Results provide constraints on the fiber lengths and PMT gating requirements to promote pulse fidelity throughout all channels. Calibration of the detector to fixed nTOFs can provide a preliminary estimate of the instrument response function (IRF), although measurement of the IRF is currently under way. These results suggest that nTOF signals can potentially be time-multiplexed with fibers so long as the design is strategic to mitigate signal-to-noise reduction, modal dispersion, and charge build-up in the PMT, which has implications beyond ion temperature imaging.

摘要

中子飞行时间(nTOF)探测器对于诊断惯性约束聚变(ICF)实验的性能至关重要,ICF实验通过内爆氘 - 氚燃料靶来实现热核条件。这些探测器利用聚变中子能谱来提取关键测量值,包括热点离子温度和燃料面密度。先前的工作[丹利等人,《科学仪器评论》94, 043502 (2023)]已展示了使用中子孔径和条纹相机为类似nTOF的探测器添加一维空间分辨率,以测量ICF内爆的离子温度分布。相比之下,本文提出的研究探索对一维探测器进行改进,使用快速光电倍增管(PMT)来基于从一维分布重建来验证二维空间分辨仪器的设计。这种改进将使用不同长度的光纤通过时间复用信号,从成像阵列中与一个PMT相连的单独闪烁体收集飞行时间轨迹。该技术已在欧米茄激光器的随行实验中得到验证,其中20个光纤耦合闪烁体通道连接到一个Photek PMT210。结果为光纤长度和PMT选通要求提供了限制,以促进所有通道的脉冲保真度。将探测器校准到固定的nTOF可以提供仪器响应函数(IRF)的初步估计,尽管目前正在对IRF进行测量。这些结果表明,只要设计策略得当,能够减轻PMT中的信噪比降低、模式色散和电荷积累,nTOF信号就有可能通过光纤进行时间复用,这对于离子温度成像之外的领域也有影响。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验