Rudra Sourav, Rao Dheemahi, Poncé Samuel, Saha Bivas
Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
Nano Lett. 2024 Sep 18;24(37):11529-11536. doi: 10.1021/acs.nanolett.4c02920. Epub 2024 Sep 6.
Electron mobility in nitride semiconductors is limited by electron-phonon, defect, grain-boundary, and dislocation scatterings. Scandium nitride (ScN), an emerging rocksalt indirect bandgap semiconductor, exhibits varying electron mobilities depending on growth conditions. Since achieving high mobility is crucial for ScN's device applications, a microscopic understanding of different scattering mechanisms is extremely important. Utilizing the Boltzmann transport formalism and experimental measurements, here we show the hierarchy of various scattering processes in restricting the electron mobility of ScN. Calculations unveil that though Fröhlich interactions set an intrinsic upper bound for ScN's electron mobility of ∼524 cm/V·s at room temperature, ionized-impurity and grain-boundary scatterings significantly reduce mobility. The experimental temperature dependence of mobilities is captured well considering both nitrogen-vacancy and oxygen-substitutional impurities with appropriate ratios, and room-temperature doping dependency agrees well with the empirical Caughey-Thomas model. Furthermore, we suggest modulation doping and polar-discontinuity doping to reduce ionized-impurity scattering in achieving a high-mobility ScN for device applications.
氮化物半导体中的电子迁移率受电子 - 声子、缺陷、晶界和位错散射的限制。氮化钪(ScN)是一种新兴的岩盐型间接带隙半导体,其电子迁移率因生长条件而异。由于实现高迁移率对ScN的器件应用至关重要,因此从微观层面理解不同的散射机制极为重要。利用玻尔兹曼输运形式理论和实验测量,我们在此展示了各种散射过程在限制ScN电子迁移率方面的层级关系。计算结果表明,尽管弗罗利希相互作用为ScN在室温下的电子迁移率设定了约524 cm/V·s的固有上限,但电离杂质和晶界散射会显著降低迁移率。考虑到具有适当比例的氮空位和氧替代杂质,实验测得的迁移率与温度的关系得到了很好的拟合,并且室温下的掺杂依赖性与经验性的考希 - 托马斯模型吻合良好。此外,我们建议采用调制掺杂和极性不连续掺杂来减少电离杂质散射,以实现用于器件应用的高迁移率ScN。