Suppr超能文献

收获对猎物-捕食者系统中猎物物种进化动态的影响。

The impact of harvesting on the evolutionary dynamics of prey species in a prey-predator systems.

机构信息

Agricultural and Ecological Research Unit, Indian Statistical Institute, Barrackpore Trunk Rd, Baranagar, Kolkata, West Bengal, 700108, India.

出版信息

J Math Biol. 2024 Sep 6;89(4):38. doi: 10.1007/s00285-024-02137-1.

Abstract

Matsuda and Abrams (Theor Popul Biol 45(1):76-91, 1994) initiated the exploration of self-extinction in species through evolution, focusing on the advantageous position of mutants near the extinction boundary in a prey-predator system with evolving foraging traits. Previous models lacked theoretical investigation into the long-term effects of harvesting. In our model, we introduce constant-effort prey and predator harvesting, along with individual logistic growth of predators. The model reveals two distinct evolutionary outcomes: (i) Evolutionary suicide, marked by a saddle-node bifurcation, where prey extinction results from the invasion of a lower forager mutant; and (ii) Evolutionary reversal, characterized by a subcritical Hopf bifurcation, leading to cyclic prey evolution. Employing an innovative approach based on Gröbner basis computation, we identify various bifurcation manifolds, including fold, transcritical, cusp, Hopf, and Bogdanov-Takens bifurcations. These contrasting scenarios emerge from variations in harvesting parameters while keeping other factors constant, rendering the model an intriguing subject of study.

摘要

松田和艾布拉姆斯(理论种群生物学 45(1):76-91,1994)开创了通过进化探索物种自我灭绝的先河,他们专注于在具有进化觅食特征的捕食者-猎物系统中,靠近灭绝边界的突变体的有利位置。以前的模型缺乏对长期收获影响的理论研究。在我们的模型中,我们引入了恒定努力的猎物和捕食者收获,以及捕食者的个体逻辑增长。该模型揭示了两种截然不同的进化结果:(i)进化自杀,以鞍结分岔为标志,其中猎物的灭绝是由于较低觅食突变体的入侵;(ii)进化逆转,以亚临界 Hopf 分岔为特征,导致猎物的周期性进化。我们采用基于 Gröbner 基计算的创新方法,确定了各种分岔流形,包括折叠、超越、尖点、Hopf 和 Bogdanov-Takens 分岔。这些对比的情景源于收获参数的变化,同时保持其他因素不变,使模型成为一个有趣的研究课题。

相似文献

1
The impact of harvesting on the evolutionary dynamics of prey species in a prey-predator systems.
J Math Biol. 2024 Sep 6;89(4):38. doi: 10.1007/s00285-024-02137-1.
2
Evolutionary Suicide of Prey: Matsuda and Abrams' Model Revisited.
Bull Math Biol. 2019 Nov;81(11):4778-4802. doi: 10.1007/s11538-018-0472-9. Epub 2018 Aug 17.
4
Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.
Math Biosci. 2016 Apr;274:58-72. doi: 10.1016/j.mbs.2016.02.003. Epub 2016 Feb 10.
5
Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model.
Math Biosci Eng. 2018 Aug 1;15(4):883-904. doi: 10.3934/mbe.2018040.
6
Ecological and evolutionary consequences of predator-prey role reversal: Allee effect and catastrophic predator extinction.
J Theor Biol. 2021 Feb 7;510:110542. doi: 10.1016/j.jtbi.2020.110542. Epub 2020 Nov 23.
7
Complex dynamics of a predator-prey model with opportunistic predator and weak Allee effect in prey.
J Biol Dyn. 2023 Dec;17(1):2225545. doi: 10.1080/17513758.2023.2225545.
8
Bifurcation analysis of Leslie-Gower predator-prey system with harvesting and fear effect.
Math Biosci Eng. 2023 Sep 22;20(10):18267-18300. doi: 10.3934/mbe.2023812.
9
Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate.
Math Biosci Eng. 2022 Jan 25;19(4):3402-3426. doi: 10.3934/mbe.2022157.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验