Suppr超能文献

耦合类洛伦兹系统中充满混沌同步的盆地与不稳定的维度变化

Riddled basins of chaotic synchronization and unstable dimension variability in coupled Lorenz-like systems.

作者信息

Czajkowski Bruno M, Viana Ricardo L

机构信息

Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba, Paraná, Brazil.

Universidade Federal do Paraná, Centro Interdisciplinar de Ciência, Tecnologia e Inovação, Núcleo de Modelagem e Computação Científica, Curitiba-PR, Brazil.

出版信息

Chaos. 2024 Sep 1;34(9). doi: 10.1063/5.0219961.

Abstract

Unstable dimension variability is an extreme form of non-hyperbolic behavior that causes a severe shadowing breakdown of chaotic trajectories. This phenomenon can occur in coupled chaotic systems possessing symmetries, leading to an invariant attractor with riddled basins of attraction. We consider the coupling of two Lorenz-like systems, which exhibits chaotic synchronized and anti-synchronized states, with their respective basins of attraction. We demonstrate that these basins are riddled, in the sense that they verify both the mathematical conditions for their existence, as well as the characteristic scaling laws indicating power-law dependence of parameters. Our simulations have shown that a biased random-walk model for the log-distances to the synchronized manifold can accurately predict the scaling exponents near blowout bifurcations in this high-dimensional coupled system. The behavior of the finite-time Lyapunov exponents in directions transversal to the invariant subspace has been used as numerical evidence of unstable dimension variability.

摘要

不稳定维度变异性是一种非双曲行为的极端形式,它会导致混沌轨迹的严重跟踪失效。这种现象可能发生在具有对称性的耦合混沌系统中,从而导致具有满是孔洞的吸引盆的不变吸引子。我们考虑两个类洛伦兹系统的耦合,它们表现出混沌同步和反同步状态以及各自的吸引盆。我们证明这些吸引盆是满是孔洞的,即它们既满足其存在的数学条件,也满足表明参数幂律依赖性的特征标度律。我们的模拟表明,对于到同步流形的对数距离的有偏随机游走模型,可以准确预测这个高维耦合系统中接近爆裂分岔处的标度指数。与不变子空间横向方向上的有限时间李雅普诺夫指数的行为已被用作不稳定维度变异性的数值证据。

相似文献

2
Chaotic bursting at the onset of unstable dimension variability.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):046213. doi: 10.1103/PhysRevE.66.046213. Epub 2002 Oct 21.
3
Catastrophic bifurcation from riddled to fractal basins.从布满孔洞的盆地到分形盆地的灾难性分岔。
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056228. doi: 10.1103/PhysRevE.64.056228. Epub 2001 Oct 26.
4
Intermingled basins in coupled Lorenz systems.耦合洛伦兹系统中的混合盆地。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 2):036207. doi: 10.1103/PhysRevE.85.036207. Epub 2012 Mar 19.
6
Unstable dimension variability and synchronization of chaotic systems.混沌系统的不稳定维度变异性与同步性。
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt A):462-8. doi: 10.1103/physreve.62.462.
7
Mechanism for the riddling transition in coupled chaotic systems.耦合混沌系统中 riddling 转变的机制。
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 2):026217. doi: 10.1103/PhysRevE.63.026217. Epub 2001 Jan 25.
8
Desynchronization of chaos in coupled logistic maps.耦合逻辑映射中混沌的去同步化
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Sep;60(3):2817-30. doi: 10.1103/physreve.60.2817.
10
Blowout bifurcation and stability of marginal synchronization of chaos.混沌边缘同步的倍周期分岔与稳定性
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 2):036216. doi: 10.1103/PhysRevE.64.036216. Epub 2001 Aug 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验