Suppr超能文献

体外交互睡眠分析预测自闭症谱系障碍个体的不良行为。

Off-Body Sleep Analysis for Predicting Adverse Behavior in Individuals With Autism Spectrum Disorder.

出版信息

IEEE J Biomed Health Inform. 2024 Nov;28(11):6886-6896. doi: 10.1109/JBHI.2024.3455942. Epub 2024 Nov 6.

Abstract

Poor sleep quality in Autism Spectrum Disorder (ASD) individuals is linked to severe daytime behaviors. This study explores the relationship between a prior night's sleep structure and its predictive power for next-day behavior in ASD individuals. The motion was extracted using a low-cost near-infrared camera in a privacy-preserving way. Over two years, we recorded overnight data from 14 individuals, spanning over 2000 nights, and tracked challenging daytime behaviors, including aggression, self-injury, and disruption. We developed an ensemble machine learning algorithm to predict next-day behavior in the morning and the afternoon. Our findings indicate that sleep quality is a more reliable predictor of morning behavior than afternoon behavior the next day. The proposed model attained an accuracy of 74% and a F1 score of 0.74in target-sensitive tasks and 67% accuracy and 0.69 F1 score in target-insensitive tasks. For 7 of the 14, better-than-chance balanced accuracy was obtained (p-value 0.05), with 3 showing significant trends (p-value 0.1). These results suggest off-body, privacy-preserving sleep monitoring as a viable method for predicting next-day adverse behavior in ASD individuals, with the potential for behavioral intervention and enhanced care in social and learning settings.

摘要

自闭症谱系障碍(ASD)个体的睡眠质量差与严重的日间行为有关。本研究探讨了前一晚的睡眠结构与其对 ASD 个体次日行为的预测能力之间的关系。运动是使用低成本近红外摄像机以保护隐私的方式提取的。在两年多的时间里,我们从 14 名个体记录了超过 2000 个晚上的夜间数据,并跟踪了具有挑战性的日间行为,包括攻击、自残和破坏行为。我们开发了一种集成机器学习算法来预测次日早上和下午的行为。我们的研究结果表明,睡眠质量是预测次日早上行为的更可靠指标,而不是下午行为。所提出的模型在目标敏感任务中的准确率为 74%,F1 得分为 0.74,在目标不敏感任务中的准确率为 67%,F1 得分为 0.69。对于 14 名个体中的 7 名,获得了优于机会的平衡准确率(p 值 0.05),其中 3 名显示出显著趋势(p 值 0.1)。这些结果表明,基于身体的、保护隐私的睡眠监测是预测 ASD 个体次日不良行为的一种可行方法,具有在社交和学习环境中进行行为干预和增强护理的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f917/11606400/f120e62c4b94/nihms-2034245-f0001.jpg

相似文献

本文引用的文献

2
Bedtime Monitoring for Fall Detection and Prevention in Older Adults.老年人跌倒检测和预防的床旁监测。
Int J Environ Res Public Health. 2022 Jun 10;19(12):7139. doi: 10.3390/ijerph19127139.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验